The worldwide emergence and dissemination of Gram-negative bacteria expressing metallo-beta-lactamases (MBLs) menace the efficacy of all beta-lactam antibiotics, including carbapenems, a last-line treatment usually restricted to severe pneumonia and urinary tract infections. Nonetheless, no MBL inhibitor is yet available in therapy. We previously identified a series of 1,2,4-triazole-3-thione derivatives acting as micromolar inhibitors of MBLs in vitro, but devoid of synergistic activity in microbiological assays. Here, via a multidisciplinary approach, including molecular modelling, synthesis, enzymology, microbiology, and X-ray crystallography, we optimized this series of compounds and identified low micromolar inhibitors active against clinically relevant MBLs (NDM-1- and VIM-type). The best inhibitors increased, to a certain extent, the susceptibility of NDM-1- and VIM-4-producing clinical isolates to meropenem. X-ray structures of three selected inhibitors in complex with NDM-1 elucidated molecular recognition at the base of potency improvement, confirmed in silico predicted orientation, and will guide further development steps.

Bersani, M., Failla, M., Vascon, F., Gianquinto, E., Bertarini, L., Baroni, M., et al. (2023). Structure-Based Optimization of 1,2,4-Triazole-3-Thione Derivatives: Improving Inhibition of NDM-/VIM-Type Metallo-β-Lactamases and Synergistic Activity on Resistant Bacteria. PHARMACEUTICALS, 16(12) [10.3390/ph16121682].

Structure-Based Optimization of 1,2,4-Triazole-3-Thione Derivatives: Improving Inhibition of NDM-/VIM-Type Metallo-β-Lactamases and Synergistic Activity on Resistant Bacteria

Sannio, Filomena
Investigation
;
Docquier, Jean-Denis
Funding Acquisition
;
2023-01-01

Abstract

The worldwide emergence and dissemination of Gram-negative bacteria expressing metallo-beta-lactamases (MBLs) menace the efficacy of all beta-lactam antibiotics, including carbapenems, a last-line treatment usually restricted to severe pneumonia and urinary tract infections. Nonetheless, no MBL inhibitor is yet available in therapy. We previously identified a series of 1,2,4-triazole-3-thione derivatives acting as micromolar inhibitors of MBLs in vitro, but devoid of synergistic activity in microbiological assays. Here, via a multidisciplinary approach, including molecular modelling, synthesis, enzymology, microbiology, and X-ray crystallography, we optimized this series of compounds and identified low micromolar inhibitors active against clinically relevant MBLs (NDM-1- and VIM-type). The best inhibitors increased, to a certain extent, the susceptibility of NDM-1- and VIM-4-producing clinical isolates to meropenem. X-ray structures of three selected inhibitors in complex with NDM-1 elucidated molecular recognition at the base of potency improvement, confirmed in silico predicted orientation, and will guide further development steps.
2023
Bersani, M., Failla, M., Vascon, F., Gianquinto, E., Bertarini, L., Baroni, M., et al. (2023). Structure-Based Optimization of 1,2,4-Triazole-3-Thione Derivatives: Improving Inhibition of NDM-/VIM-Type Metallo-β-Lactamases and Synergistic Activity on Resistant Bacteria. PHARMACEUTICALS, 16(12) [10.3390/ph16121682].
File in questo prodotto:
File Dimensione Formato  
pharmaceuticals-16-01682-with-cover.pdf

accesso aperto

Descrizione: Full Text
Tipologia: PDF editoriale
Licenza: Creative commons
Dimensione 2.25 MB
Formato Adobe PDF
2.25 MB Adobe PDF Visualizza/Apri
pharmaceuticals-2728467-supplementary.pdf

accesso aperto

Descrizione: Supplementary Material
Tipologia: PDF editoriale
Licenza: Creative commons
Dimensione 4.76 MB
Formato Adobe PDF
4.76 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1277544