Given a bounded open connected set Omega subset of R-2 with Lipschitz boundary, we consider the class of piecewise constant maps u taking three fixed values alpha , beta , gamma is an element of R-2, vertices of an equilateral triangle; for any u in this class, using a weak notion of Jacobian determinant valid for BV functions, we give a precise description of Det (del u) and show that the relaxed graph area of u is bounded from above by a quantity related to the flat norm of Det (del u) . The provided upper bound allows to show the validity of a De Giorgi conjecture regarding the relaxed area functional when one restricts to this class of piecewise constant functions.

Scala, R., Scianna, G. (2024). On the L^1-relaxed area of graphs of BV piecewise constant maps taking three values. ADVANCES IN CALCULUS OF VARIATIONS [10.1515/acv-2023-0108].

On the L^1-relaxed area of graphs of BV piecewise constant maps taking three values

Scala, Riccardo
;
Scianna, Giuseppe
2024-01-01

Abstract

Given a bounded open connected set Omega subset of R-2 with Lipschitz boundary, we consider the class of piecewise constant maps u taking three fixed values alpha , beta , gamma is an element of R-2, vertices of an equilateral triangle; for any u in this class, using a weak notion of Jacobian determinant valid for BV functions, we give a precise description of Det (del u) and show that the relaxed graph area of u is bounded from above by a quantity related to the flat norm of Det (del u) . The provided upper bound allows to show the validity of a De Giorgi conjecture regarding the relaxed area functional when one restricts to this class of piecewise constant functions.
2024
Scala, R., Scianna, G. (2024). On the L^1-relaxed area of graphs of BV piecewise constant maps taking three values. ADVANCES IN CALCULUS OF VARIATIONS [10.1515/acv-2023-0108].
File in questo prodotto:
File Dimensione Formato  
10.1515_acv-2023-0108.pdf

non disponibili

Descrizione: paper
Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.62 MB
Formato Adobe PDF
1.62 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1277275