Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
TSPEAR variants cause autosomal recessive ectodermal dysplasia (ARED) 14. The function of TSPEAR is unknown. The clinical features, the mutation spectrum, and the underlying mechanisms of ARED14 are poorly understood. Combining data from new and previously published individuals established that ARED14 is primarily characterized by dental anomalies such as conical tooth cusps and hypodontia, like those seen in individuals with WNT10A-related odontoonychodermal dysplasia. AlphaFold-predicted structure-based analysis showed that most of the pathogenic TSPEAR missense variants likely destabilize the b-propeller of the protein. Analysis of 100000 Genomes Project (100KGP) data revealed multiple founder TSPEAR variants across different populations. Mutational and recombination clock analyses demonstrated that non-Finnish European founder variants likely originated around the end of the last ice age, a period of major climatic transition. Analysis of gnomAD data showed that the non-Finnish European population TSPEAR gene-carrier rate is 1/140, making it one of the commonest AREDs. Phylogenetic and AlphaFold structural analyses showed that TSPEAR is an ortholog of drosophila Closca, an extracellular matrix-dependent signaling regulator. We, therefore, hypothesized that TSPEAR could have a role in enamel knot, a structure that coordinates patterning of developing tooth cusps. Analysis of mouse single-cell RNA sequencing (scRNA-seq) data revealed highly restricted expression of Tspear in clusters representing enamel knots. A tspeara-/-;tspearb-/- doubleknockout zebrafish model recapitulated the clinical features of ARED14 and fin regeneration abnormalities of wnt10a knockout fish, thus suggesting interaction between tspear and wnt10a. In summary, we provide insights into the role of TSPEAR in ectodermal development and the evolutionary history, epidemiology, mechanisms, and consequences of its loss of function variants.
Jackson, A., Lin, S., Jones, E.A., Chandler, K.E., Orr, D., Moss, C., et al. (2023). Clinical, genetic, epidemiologic, evolutionary, and functional delineation of TSPEAR-related autosomal recessive ectodermal dysplasia 14. HGG ADVANCES, 4(2) [10.1016/j.xhgg.2023.100186].
Clinical, genetic, epidemiologic, evolutionary, and functional delineation of TSPEAR-related autosomal recessive ectodermal dysplasia 14
Jackson, Adam;Lin, Sheng-Jia;Jones, Elizabeth A.;Chandler, Kate E.;Orr, David;Moss, Celia;Haider, Zahra;Ryan, Gavin;Holden, Simon;Harrison, Mike;Burrows, Nigel;Jones, Wendy D.;Loveless, Mary;Petree, Cassidy;Stewart, Helen;Low, Karen;Donnelly, Deirdre;Lovell, Simon;Drosou, Konstantina;Ambrose, J. C.;Arumugam, P.;Bevers, R.;Bleda, M.;Boardman-Pretty, F.;Boustred, C. R.;Brittain, H.;Brown, M. A.;Caulfield, M. J.;Chan, G. C.;Giess, A.;Griffin, J. N.;Hamblin, A.;Henderson, S.;Hubbard, T. J. P.;Jackson, R.;Jones, L. J.;Kasperaviciute, D.;Kayikci, M.;Kousathanas, A.;Lahnstein, L.;Lakey, A.;Leigh, S. E. A.;Leong, I. U. S.;Lopez, F. J.;Maleady-Crowe, F.;McEntagart, M.;Minneci, F.;Mitchell, J.;Moutsianas, L.;Mueller, M.;Murugaesu, N.;Need, A. C.;O‘Donovan, P.;Odhams, C. A.;Patch, C.;Perez-Gil, D.;Pereira, M. B.;Pullinger, J.;Rahim, T.;Rendon, A.;Rogers, T.;Savage, K.;Sawant, K.;Scott, R. H.;Siddiq, A.;Sieghart, A.;Smith, S. C.;Sosinsky, A.;Stuckey, A.;Tanguy, M.;Taylor Tavares, A. L.;Thomas, E. R. A.;Thompson, S. R.;Tucci, A.;Welland, M. J.;Williams, E.;Witkowska, K.;Wood, S. M.;Zarowiecki, M.;Riess, Olaf;Haack, Tobias B.;Graessner, Holm;Zurek, Birte;Ellwanger, Kornelia;Ossowski, Stephan;Demidov, German;Sturm, Marc;Schulze-Hentrich, Julia M.;Schüle, Rebecca;Kessler, Christoph;Wayand, Melanie;Synofzik, Matthis;Wilke, Carlo;Traschütz, Andreas;Schöls, Ludger;Hengel, Holger;Heutink, Peter;Brunner, Han;Scheffer, Hans;Hoogerbrugge, Nicoline;Hoischen, Alexander;'t Hoen, Peter A. C.;Vissers, Lisenka E. L. M.;Gilissen, Christian;Steyaert, Wouter;Sablauskas, Karolis;de Voer, Richarda M.;Kamsteeg, Erik-Jan;van de Warrenburg, Bart;van Os, Nienke;Paske, Iris te;Janssen, Erik;de Boer, Elke;Steehouwer, Marloes;Yaldiz, Burcu;Kleefstra, Tjitske;Brookes, Anthony J.;Veal, Colin;Gibson, Spencer;Wadsley, Marc;Mehtarizadeh, Mehdi;Riaz, Umar;Warren, Greg;Dizjikan, Farid Yavari;Shorter, Thomas;Töpf, Ana;Straub, Volker;Bettolo, Chiara Marini;Specht, Sabine;Clayton-Smith, Jill;Banka, Siddharth;Alexander, Elizabeth;Jackson, Adam;Faivre, Laurence;Thauvin, Christel;Vitobello, Antonio;Denommé-Pichon, Anne-Sophie;Duffourd, Yannis;Tisserant, Emilie;Bruel, Ange-Line;Peyron, Christine;Pélissier, Aurore;Beltran, Sergi;Gut, Ivo Glynne;Laurie, Steven;Piscia, Davide;Matalonga, Leslie;Papakonstantinou, Anastasios;Bullich, Gemma;Corvo, Alberto;Garcia, Carles;Fernandez-Callejo, Marcos;Hernández, Carles;Picó, Daniel;Paramonov, Ida;Lochmüller, Hanns;Gumus, Gulcin;Bros-Facer, Virginie;Rath, Ana;Hanauer, Marc;Olry, Annie;Lagorce, David;Havrylenko, Svitlana;Izem, Katia;Rigour, Fanny;Stevanin, Giovanni;Durr, Alexandra;Davoine, Claire-Sophie;Guillot-Noel, Léna;Heinzmann, Anna;Coarelli, Giulia;Bonne, Gisèle;Evangelista, Teresinha;Allamand, Valérie;Nelson, Isabelle;Ben Yaou, Rabah;Metay, Corinne;Eymard, Bruno;Cohen, Enzo;Atalaia, Antonio;Stojkovic, Tanya;Macek, Milan;Turnovec, Marek;Thomasová, Dana;Kremliková, Radka Pourová;Franková, Vera;Havlovicová, Markéta;Kremlik, Vlastimil;Parkinson, Helen;Keane, Thomas;Spalding, Dylan;Senf, Alexander;Robinson, Peter;Danis, Daniel;Robert, Glenn;Costa, Alessia;Patch, Christine;Hanna, Mike;Houlden, Henry;Reilly, Mary;Vandrovcova, Jana;Muntoni, Francesco;Zaharieva, Irina;Sarkozy, Anna;Timmerman, Vincent;Baets, Jonathan;Van de Vondel, Liedewei;Beijer, Danique;de Jonghe, Peter;Nigro, Vincenzo;Banfi, Sandro;Torella, Annalaura;Musacchia, Francesco;Piluso, Giulio;Ferlini, Alessandra;Selvatici, Rita;Rossi, Rachele;Neri, Marcella;Aretz, Stefan;Spier, Isabel;Sommer, Anna Katharina;Peters, Sophia;Oliveira, Carla;Pelaez, Jose Garcia;Matos, Ana Rita;José, Celina São;Ferreira, Marta;Gullo, Irene;Fernandes, Susana;Garrido, Luzia;Ferreira, Pedro;Carneiro, Fátima;Swertz, Morris A.;Johansson, Lennart;van der Velde, Joeri K.;van der Vries, Gerben;Neerincx, Pieter B.;Roelofs-Prins, Dieuwke;Köhler, Sebastian;Metcalfe, Alison;Verloes, Alain;Drunat, Séverine;Rooryck, Caroline;Trimouille, Aurelien;Castello, Raffaele;Morleo, Manuela;Pinelli, Michele;Varavallo, Alessandra;De la Paz, Manuel Posada;Sánchez, Eva Bermejo;Martín, Estrella López;Delgado, Beatriz Martínez;Alonso García de la Rosa, F. Javier;Ciolfi, Andrea;Dallapiccola, Bruno;Pizzi, Simone;Radio, Francesca Clementina;Tartaglia, Marco;Renieri, Alessandra;Benetti, Elisa;Balicza, Peter;Molnar, Maria Judit;Maver, Ales;Peterlin, Borut;Münchau, Alexander;Lohmann, Katja;Herzog, Rebecca;Pauly, Martje;Macaya, Alfons;Marcé-Grau, Anna;Osorio, Andres Nascimiento;Natera de Benito, Daniel;Lochmüller, Hanns;Thompson, Rachel;Polavarapu, Kiran;Beeson, David;Cossins, Judith;Rodriguez Cruz, Pedro M.;Hackman, Peter;Johari, Mridul;Savarese, Marco;Udd, Bjarne;Horvath, Rita;Capella, Gabriel;Valle, Laura;Holinski-Feder, Elke;Laner, Andreas;Steinke-Lange, Verena;Schröck, Evelin;Rump, Andreas;Varshney, Gaurav K.;Banka, Siddharth
2023-01-01
Abstract
TSPEAR variants cause autosomal recessive ectodermal dysplasia (ARED) 14. The function of TSPEAR is unknown. The clinical features, the mutation spectrum, and the underlying mechanisms of ARED14 are poorly understood. Combining data from new and previously published individuals established that ARED14 is primarily characterized by dental anomalies such as conical tooth cusps and hypodontia, like those seen in individuals with WNT10A-related odontoonychodermal dysplasia. AlphaFold-predicted structure-based analysis showed that most of the pathogenic TSPEAR missense variants likely destabilize the b-propeller of the protein. Analysis of 100000 Genomes Project (100KGP) data revealed multiple founder TSPEAR variants across different populations. Mutational and recombination clock analyses demonstrated that non-Finnish European founder variants likely originated around the end of the last ice age, a period of major climatic transition. Analysis of gnomAD data showed that the non-Finnish European population TSPEAR gene-carrier rate is 1/140, making it one of the commonest AREDs. Phylogenetic and AlphaFold structural analyses showed that TSPEAR is an ortholog of drosophila Closca, an extracellular matrix-dependent signaling regulator. We, therefore, hypothesized that TSPEAR could have a role in enamel knot, a structure that coordinates patterning of developing tooth cusps. Analysis of mouse single-cell RNA sequencing (scRNA-seq) data revealed highly restricted expression of Tspear in clusters representing enamel knots. A tspeara-/-;tspearb-/- doubleknockout zebrafish model recapitulated the clinical features of ARED14 and fin regeneration abnormalities of wnt10a knockout fish, thus suggesting interaction between tspear and wnt10a. In summary, we provide insights into the role of TSPEAR in ectodermal development and the evolutionary history, epidemiology, mechanisms, and consequences of its loss of function variants.
Jackson, A., Lin, S., Jones, E.A., Chandler, K.E., Orr, D., Moss, C., et al. (2023). Clinical, genetic, epidemiologic, evolutionary, and functional delineation of TSPEAR-related autosomal recessive ectodermal dysplasia 14. HGG ADVANCES, 4(2) [10.1016/j.xhgg.2023.100186].
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1277040
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.