We consider a degenerate wave equation in one dimension, with drift and in presence of a leading operator which is not in divergence form. We impose a homogeneous Dirichlet boundary condition where the degeneracy occurs and a boundary damping at the other endpoint. We provide some conditions for the uniform exponential decay of solutions for the associated Cauchy problem.

Fragnelli, G., Mugnai, D. (2025). Linear stabilization for a degenerate wave equation in non divergence form with drift. BULLETIN OF MATHEMATICAL SCIENCES [10.1142/S1664360725500018].

Linear stabilization for a degenerate wave equation in non divergence form with drift

Fragnelli, Genni;
2025-01-01

Abstract

We consider a degenerate wave equation in one dimension, with drift and in presence of a leading operator which is not in divergence form. We impose a homogeneous Dirichlet boundary condition where the degeneracy occurs and a boundary damping at the other endpoint. We provide some conditions for the uniform exponential decay of solutions for the associated Cauchy problem.
2025
Fragnelli, G., Mugnai, D. (2025). Linear stabilization for a degenerate wave equation in non divergence form with drift. BULLETIN OF MATHEMATICAL SCIENCES [10.1142/S1664360725500018].
File in questo prodotto:
File Dimensione Formato  
fragnelli-mugnai-2025-linear-stabilization-for-a-degenerate-wave-equation-in-non-divergence-form-with-drift.pdf

accesso aperto

Tipologia: PDF editoriale
Licenza: Creative commons
Dimensione 413.17 kB
Formato Adobe PDF
413.17 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1276643