We consider a degenerate wave equation in one dimension, with drift and in presence of a leading operator which is not in divergence form. We impose a homogeneous Dirichlet boundary condition where the degeneracy occurs and a boundary damping at the other endpoint. We provide some conditions for the uniform exponential decay of solutions for the associated Cauchy problem.

Fragnelli, G., Mugnai, D. (In corso di stampa). Linear stabilization for a degenerate wave equation in non divergence form with drift. ADVANCES IN DIFFERENTIAL EQUATIONS.

Linear stabilization for a degenerate wave equation in non divergence form with drift

Fragnelli, Genni;
In corso di stampa

Abstract

We consider a degenerate wave equation in one dimension, with drift and in presence of a leading operator which is not in divergence form. We impose a homogeneous Dirichlet boundary condition where the degeneracy occurs and a boundary damping at the other endpoint. We provide some conditions for the uniform exponential decay of solutions for the associated Cauchy problem.
In corso di stampa
Fragnelli, G., Mugnai, D. (In corso di stampa). Linear stabilization for a degenerate wave equation in non divergence form with drift. ADVANCES IN DIFFERENTIAL EQUATIONS.
File in questo prodotto:
File Dimensione Formato  
A-P-1227-ADE-00.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 363.15 kB
Formato Adobe PDF
363.15 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1276643