We consider a degenerate wave equation in one dimension, with drift and in presence of a leading operator which is not in divergence form. We impose a homogeneous Dirichlet boundary condition where the degeneracy occurs and a boundary damping at the other endpoint. We provide some conditions for the uniform exponential decay of solutions for the associated Cauchy problem.
Fragnelli, G., Mugnai, D. (2025). Linear stabilization for a degenerate wave equation in non divergence form with drift. BULLETIN OF MATHEMATICAL SCIENCES [10.1142/S1664360725500018].
Linear stabilization for a degenerate wave equation in non divergence form with drift
Fragnelli, Genni;
2025-01-01
Abstract
We consider a degenerate wave equation in one dimension, with drift and in presence of a leading operator which is not in divergence form. We impose a homogeneous Dirichlet boundary condition where the degeneracy occurs and a boundary damping at the other endpoint. We provide some conditions for the uniform exponential decay of solutions for the associated Cauchy problem.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
fragnelli-mugnai-2025-linear-stabilization-for-a-degenerate-wave-equation-in-non-divergence-form-with-drift.pdf
accesso aperto
Tipologia:
PDF editoriale
Licenza:
Creative commons
Dimensione
413.17 kB
Formato
Adobe PDF
|
413.17 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11365/1276643
