We consider a degenerate wave equation in one dimension, with drift and in presence of a leading operator which is not in divergence form. We impose a homogeneous Dirichlet boundary condition where the degeneracy occurs and a boundary damping at the other endpoint. We provide some conditions for the uniform exponential decay of solutions for the associated Cauchy problem.
Fragnelli, G., Mugnai, D. (In corso di stampa). Linear stabilization for a degenerate wave equation in non divergence form with drift. ADVANCES IN DIFFERENTIAL EQUATIONS.
Linear stabilization for a degenerate wave equation in non divergence form with drift
Fragnelli, Genni;
In corso di stampa
Abstract
We consider a degenerate wave equation in one dimension, with drift and in presence of a leading operator which is not in divergence form. We impose a homogeneous Dirichlet boundary condition where the degeneracy occurs and a boundary damping at the other endpoint. We provide some conditions for the uniform exponential decay of solutions for the associated Cauchy problem.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
A-P-1227-ADE-00.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
363.15 kB
Formato
Adobe PDF
|
363.15 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11365/1276643