We consider a degenerate/singular wave equation in one dimension, with drift and in presence of a leading operator which is not in divergence form. We impose a homogeneous Dirichlet boundary condition where the degeneracy occurs and a boundary damping at the other endpoint. We provide some conditions for the uniform exponential decay of solutions for the associated Cauchy problem.
Fragnelli, G., Mugnai, D., Sbai, A. (In corso di stampa). Stabilization for degenerate equations with drift and small singular term. MATHEMATICAL METHODS IN THE APPLIED SCIENCES.
Stabilization for degenerate equations with drift and small singular term
Fragnelli, Genni;
In corso di stampa
Abstract
We consider a degenerate/singular wave equation in one dimension, with drift and in presence of a leading operator which is not in divergence form. We impose a homogeneous Dirichlet boundary condition where the degeneracy occurs and a boundary damping at the other endpoint. We provide some conditions for the uniform exponential decay of solutions for the associated Cauchy problem.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
FMS.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
317.39 kB
Formato
Adobe PDF
|
317.39 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11365/1276641