In this paper, we investigate the stabilization of the transmission problem of the degenerate wave equation and the heat equation under the Coleman-Gurtin heat conduction law or Gurtin-Pipkin law with the memory effect. We investigate the polynomial stability of this system when employing the Coleman-Gurtin heat conduction, establishing a decay rate of type t-4$t<^>{-4}$. Next, we demonstrate exponential stability in the case when Gurtin-Pipkin heat conduction is applied.

Akil, M., Fragnelli, G., Issa, I. (2024). The energy decay rate of a transmission system governed by the degenerate wave equation with drift and under heat conduction with the memory effect. MATHEMATISCHE NACHRICHTEN, 297(10), 3766-3796 [10.1002/mana.202300571].

The energy decay rate of a transmission system governed by the degenerate wave equation with drift and under heat conduction with the memory effect

Fragnelli, Genni;
2024-01-01

Abstract

In this paper, we investigate the stabilization of the transmission problem of the degenerate wave equation and the heat equation under the Coleman-Gurtin heat conduction law or Gurtin-Pipkin law with the memory effect. We investigate the polynomial stability of this system when employing the Coleman-Gurtin heat conduction, establishing a decay rate of type t-4$t<^>{-4}$. Next, we demonstrate exponential stability in the case when Gurtin-Pipkin heat conduction is applied.
2024
Akil, M., Fragnelli, G., Issa, I. (2024). The energy decay rate of a transmission system governed by the degenerate wave equation with drift and under heat conduction with the memory effect. MATHEMATISCHE NACHRICHTEN, 297(10), 3766-3796 [10.1002/mana.202300571].
File in questo prodotto:
File Dimensione Formato  
wileyNJD-AMS_1COL.pdf

embargo fino al 29/07/2025

Tipologia: Post-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 358.26 kB
Formato Adobe PDF
358.26 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Mathematische Nachrichten - 2024 - Akil - The energy decay rate of a transmission system governed by the degenerate wave.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 409.91 kB
Formato Adobe PDF
409.91 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1274735