Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
We report measurements of the flux-integrated and + charged-current cross-sections on water and hydrocarbon targets using the T2K anti-neutrino beam with a mean beam energy of 0.86 GeV. The signal is defined as the (anti-)neutrino charged-current interaction with one induced and no detected charged pion or proton. These measurements are performed using a new WAGASCI module recently added to the T2K setup in combination with the INGRID Proton Module. The phase space of muons is restricted to the high-detection efficiency region, p-muon > 400 MeV/c and theta-muon < 30deg, in the laboratory frame. An absence of pions and protons in the detectable phase spaces of p-pion > 200 MeV/c, theta-pion < 70 deg and p-proton > 600MeV/c, theta-proton < 70 deg is required. In this paper, both the; cross-sections and +; cross-sections on water and hydrocarbon targets and their ratios are provided by using the D'Agostini unfolding method. The results of the integrated ; cross-section measurements over this phase space are ;\sigma{\rm H{2}O}=(1.082\pm0.068(\rm stat.) {+0.145}{-0.128}(\rm syst.)) \times 10 {-39}\,{\rm cm {2} / nucleon};, ;\sigma{\rm CH}=(1.096\pm0.054(\rm stat.) {+0.132}{-0.117}(\rm syst.)) \times 10 {-39}\,{\rm cm {2} / nucleon};, and ;\sigma{\rm H{2}O}/\sigma{\rm CH} = 0.987\pm0.078(\rm stat.) {+0.093}{-0.090}(\rm syst.);. The +; cross-section is ;\sigma{\rm H{2}O} = (1.155\pm0.064(\rm stat.) {+0.148}{-0.129}(\rm syst.)) \times 10 {-39}\,{\rm cm {2} / nucleon};, ;\sigma{\rm CH}=(1.159\pm0.049(\rm stat.) {+0.129}{-0.115}(\rm syst.)) \times 10 {-39}\,{\rm cm {2} / nucleon};, and ;\sigma{\rm H{2}O}/\sigma{\rm CH}=0.996\pm0.069(\rm stat.) {+0.083}{-0.078}(\rm syst.);.
Abe, K., Akhlaq, N., Akutsu, R., Ali, A., Alt, C., Andreopoulos, C., et al. (2021). Measurements of ν̅μ and ν̅μ + νμ charged-current cross-sections without detected pions or protons on water and hydrocarbon at a mean anti-neutrino energy of 0.86 GeV. PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2021(4) [10.1093/ptep/ptab014].
Measurements of ν̅μ and ν̅μ + νμ charged-current cross-sections without detected pions or protons on water and hydrocarbon at a mean anti-neutrino energy of 0.86 GeV
Abe K.;Akhlaq N.;Akutsu R.;Ali A.;Alt C.;Andreopoulos C.;Anthony L.;Antonova M.;Aoki S.;Ariga A.;Arihara T.;Asada Y.;Ashida Y.;Atkin E. T.;Awataguchi Y.;Ban S.;Barbi M.;Barker G. J.;Barr G.;Barrow D.;Barry C.;Batkiewicz-Kwasniak M.;Beloshapkin A.;Bench F.;Berardi V.;Berkman S.;Berns L.;Bhadra S.;Bienstock S.;Blanchet A.;Blondel A.;Bolognesi S.;Bonus T.;Bourguille B.;Boyd S. B.;Brailsford D.;Bravar A.;Bravo Berguno D.;Bronner C.;Bron S.;Bubak A.;Buizza Avanzini M.;Calcutt J.;Campbell T.;Cao S.;Cartwright S. L.;Catanesi M. G.;Cervera A.;Chappell A.;Checchia C.;Cherdack D.;Chikuma N.;Christodoulou G.;Cicerchia M.;Coleman J.;Collazuol G.;Cook L.;Coplowe D.;Cudd A.;Dabrowska A.;De Rosa G.;Dealtry T.;Denner P. F.;Dennis S. R.;Densham C.;Dergacheva A.;Di Lodovico F.;Dokania N.;Dolan S.;Doyle T. A.;Drapier O.;Dumarchez J.;Dunne P.;Eguchi A.;Eklund L.;Emery-Schrenk S.;Ereditato A.;Fernandez P.;Feusels T.;Finch A. J.;Fiorentini G. A.;Fiorillo G.;Francois C.;Friend M.;Fujii Y.;Fujita R.;Fukuda D.;Fukuda R.;Fukuda Y.;Fusshoeller K.;Gameil K.;Giganti C.;Golan T.;Gonin M.;Gorin A.;Guigue M.;Hadley D. R.;Haigh J. T.;Hamacher-Baumann P.;Harris D. A.;Hartz M.;Hasegawa T.;Hassani S.;Hastings N. C.;Hayashino T.;Hayato Y.;Hiramoto A.;Hogan M.;Holeczek J.;Hong Van N. T.;Honjo T.;Iacob F.;Ichikawa A. K.;Ikeda M.;Ishida T.;Ishii T.;Ishitsuka M.;Iwamoto K.;Izmaylov A.;Izumi N.;Jakkapu M.;Jamieson B.;Jenkins S. J.;Jesus-Valls C.;Jiang M.;Johnson S.;Jonsson P.;Jung C. K.;Jurj P. B.;Kabirnezhad M.;Kaboth A. C.;Kajita T.;Kakuno H.;Kameda J.;Karlen D.;Kasetti S. P.;Kataoka Y.;Katayama Y.;Katori T.;Kato Y.;Kearns E.;Khabibullin M.;Khotjantsev A.;Kikawa T.;Kikutani H.;Kim H.;Kim J.;King S.;Kisiel J.;Knight A.;Knox A.;Kobata T.;Kobayashi T.;Koch L.;Koga T.;Konaka A.;Kormos L. L.;Koshio Y.;Kostin A.;Kowalik K.;Kubo H.;Kudenko Y.;Kukita N.;Kuribayashi S.;Kurjata R.;Kutter T.;Kuze M.;Labarga L.;Lagoda J.;Lamoureux M.;Last D.;Laveder M.;Lawe M.;Licciardi M.;Lindner T.;Litchfield R. P.;Liu S. L.;Li X.;Longhin A.;Ludovici L.;Lu X.;Lux T.;Machado L. N.;Magaletti L.;Mahn K.;Malek M.;Manly S.;Maret L.;Marino A. D.;Marti-Magro L.;Martin J. F.;Maruyama T.;Matsubara T.;Matsushita K.;Matveev V.;Mauger C.;Mavrokoridis K.;Mazzucato E.;McCarthy M.;McCauley N.;McElwee J.;McFarland K. S.;McGrew C.;Mefodiev A.;Metelko C.;Mezzetto M.;Minamino A.;Mineev O.;Mine S.;Miura M.;Molina Bueno L.;Moriyama S.;Morrison J.;Mueller T. A.;Munteanu L.;Murphy S.;Nagai Y.;Nakadaira T.;Nakahata M.;Nakajima Y.;Nakamura A.;Nakamura K. G.;Nakamura K.;Nakano Y.;Nakayama S.;Nakaya T.;Nakayoshi K.;Nantais C.;Naseby C. E. R.;Ngoc T. V.;Nguyen V. Q.;Niewczas K.;Nishikawa K.;Nishimura Y.;Noah E.;Nonnenmacher T. S.;Nova F.;Novella P.;Nowak J.;Nugent J. C.;O'Keeffe H. M.;O'Sullivan L.;Odagawa T.;Ogawa T.;Okada R.;Okumura K.;Okusawa T.;Oser S. M.;Owen R. A.;Oyama Y.;Palladino V.;Palomino J. L.;Paolone V.;Pari M.;Parker W. C.;Parsa S.;Pasternak J.;Paudyal P.;Pavin M.;Payne D.;Penn G. C.;Pickering L.;Pidcott C.;Pintaudi G.;Pinzon Guerra E. S.;Pistillo C.;Popov B.;Porwit K.;Posiadala-Zezula M.;Pritchard A.;Quilain B.;Radermacher T.;Radicioni E.;Radics B.;Ratoff P. N.;Reinherz-Aronis E.;Riccio C.;Rondio E.;Roth S.;Rubbia A.;Ruggeri A. C.;Ruggles C.;Rychter A.;Sakashita K.;Sanchez F.;Santucci G.;Schloesser C. M.;Scholberg K.;Schwehr J.;Scott M.;Seiya Y.;Sekiguchi T.;Sekiya H.;Sgalaberna D.;Shah R.;Shaikhiev A.;Shaker F.;Shaykina A.;Shiozawa M.;Shorrock W.;Shvartsman A.;Skwarczynski K.;Smirnov A.;Smy M.;Sobczyk J. T.;Sobel H.;Soler F. J. P.;Sonoda Y.;Spina R.;Steinmann J.;Suvorov S.;Suzuki A.;Suzuki S. Y.;Suzuki Y.;Sztuc A. A.;Tada M.;Tajima M.;Takeda A.;Takeuchi Y.;Tanaka H. K.;Tanaka H. A.;Tanaka S.;Tanihara Y.;Tani M.;Teshima N.;Thompson L. F.;Toki W.;Touramanis C.;Towstego T.;Tsui K. M.;Tsukamoto T.;Tzanov M.;Uchida Y.;Uno W.;Vagins M.;Valder S.;Vallari Z.;Vargas D.;Vasseur G.;Vilela C.;Vinning W. G. S.;Vladisavljevic T.;Volkov V. V.;Wachala T.;Walker J.;Walsh J. G.;Wang Y.;Wark D.;Wascko M. O.;Weber A.;Wendell R.;Wilking M. J.;Wilkinson C.;Wilson J. R.;Wilson R. J.;Wood K.;Wret C.;Xia J.;Yamada Y.;Yamamoto K.;Yanagisawa C.;Yang G.;Yano T.;Yasutome K.;Yen S.;Yershov N.;Yokoyama M.;Yoshida T.;Yoshimoto Y.;Yu M.;Zalewska A.;Zalipska J.;Zaremba K.;Zarnecki G.;Ziembicki M.;Zimmerman E. D.;Zito M.;Zsoldos S.;Zykova A.
2021-01-01
Abstract
We report measurements of the flux-integrated and + charged-current cross-sections on water and hydrocarbon targets using the T2K anti-neutrino beam with a mean beam energy of 0.86 GeV. The signal is defined as the (anti-)neutrino charged-current interaction with one induced and no detected charged pion or proton. These measurements are performed using a new WAGASCI module recently added to the T2K setup in combination with the INGRID Proton Module. The phase space of muons is restricted to the high-detection efficiency region, p-muon > 400 MeV/c and theta-muon < 30deg, in the laboratory frame. An absence of pions and protons in the detectable phase spaces of p-pion > 200 MeV/c, theta-pion < 70 deg and p-proton > 600MeV/c, theta-proton < 70 deg is required. In this paper, both the; cross-sections and +; cross-sections on water and hydrocarbon targets and their ratios are provided by using the D'Agostini unfolding method. The results of the integrated ; cross-section measurements over this phase space are ;\sigma{\rm H{2}O}=(1.082\pm0.068(\rm stat.) {+0.145}{-0.128}(\rm syst.)) \times 10 {-39}\,{\rm cm {2} / nucleon};, ;\sigma{\rm CH}=(1.096\pm0.054(\rm stat.) {+0.132}{-0.117}(\rm syst.)) \times 10 {-39}\,{\rm cm {2} / nucleon};, and ;\sigma{\rm H{2}O}/\sigma{\rm CH} = 0.987\pm0.078(\rm stat.) {+0.093}{-0.090}(\rm syst.);. The +; cross-section is ;\sigma{\rm H{2}O} = (1.155\pm0.064(\rm stat.) {+0.148}{-0.129}(\rm syst.)) \times 10 {-39}\,{\rm cm {2} / nucleon};, ;\sigma{\rm CH}=(1.159\pm0.049(\rm stat.) {+0.129}{-0.115}(\rm syst.)) \times 10 {-39}\,{\rm cm {2} / nucleon};, and ;\sigma{\rm H{2}O}/\sigma{\rm CH}=0.996\pm0.069(\rm stat.) {+0.083}{-0.078}(\rm syst.);.
Abe, K., Akhlaq, N., Akutsu, R., Ali, A., Alt, C., Andreopoulos, C., et al. (2021). Measurements of ν̅μ and ν̅μ + νμ charged-current cross-sections without detected pions or protons on water and hydrocarbon at a mean anti-neutrino energy of 0.86 GeV. PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2021(4) [10.1093/ptep/ptab014].
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1265155
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.