The green energy transition calls for various solutions to enhance environmental sustainability. One of these is represented by renewable energy communities, which may help transition from centralized energy production to distributed renewable generation. European countries are actively promoting incentive schemes for energy communities to foster local electricity self-consumption in order to balance demand and renewable generation. In this context, energy storage facilities can be employed to gather the energy production surplus and use it in periods of low generation. In this paper, we focus on the optimal operation of an incentive-based energy community in the presence of energy storage systems. A centralized optimization problem was formulated to optimally operate storage systems at the community level. Starting from this solution, distributed charging/discharging commands were found to optimally operate the single storage units. Moreover, conditions guaranteeing the convenience of using energy storage systems inside the community were derived. Numerical simulations were performed to validate the reported results and to evaluate the potential benefits of energy storage facilities inside renewable energy communities.
Zanvettor, G.G., Casini, M., Vicino, A. (2024). Optimal Operation of Energy Storage Facilities in Incentive-Based Energy Communities. ENERGIES, 17(11) [10.3390/en17112589].
Optimal Operation of Energy Storage Facilities in Incentive-Based Energy Communities
Zanvettor, Giovanni Gino;Casini, Marco
;Vicino, Antonio
2024-01-01
Abstract
The green energy transition calls for various solutions to enhance environmental sustainability. One of these is represented by renewable energy communities, which may help transition from centralized energy production to distributed renewable generation. European countries are actively promoting incentive schemes for energy communities to foster local electricity self-consumption in order to balance demand and renewable generation. In this context, energy storage facilities can be employed to gather the energy production surplus and use it in periods of low generation. In this paper, we focus on the optimal operation of an incentive-based energy community in the presence of energy storage systems. A centralized optimization problem was formulated to optimally operate storage systems at the community level. Starting from this solution, distributed charging/discharging commands were found to optimally operate the single storage units. Moreover, conditions guaranteeing the convenience of using energy storage systems inside the community were derived. Numerical simulations were performed to validate the reported results and to evaluate the potential benefits of energy storage facilities inside renewable energy communities.File | Dimensione | Formato | |
---|---|---|---|
2024-energies-published-v2.pdf
accesso aperto
Tipologia:
PDF editoriale
Licenza:
Creative commons
Dimensione
1.24 MB
Formato
Adobe PDF
|
1.24 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1263435