The combination of photoacoustic imaging (PAI) and photothermal therapy (PTT) is an attractive approach in cancer management due to the non-invasive features combined with real-time imaging and selective tissue damage by non-ionizing radiation. This approach is especially appealing for Head and Neck Squamous Cell Carcinoma (HNSCC) management, where up to 40% of patients require modifications of the treatment regimen. On the other hand, most of the agents developed for PAI/PTT suffer from persistence or re-shaping issues. Here, a unique non-persistent plasmon nano-architecture (tNAs-IRDye) is presented that simultaneously acts as a contrast agent for PAI and as a photothermal transducer for PTT. The tNAs-IRDye are fully characterized and evaluated in vitro and ex vivo, and their performance as theranostic agents is assessed in HPV-negative HNSCC murine models. A significant modulation of tumor growth is obtained in vivo upon intratumoral injection of tNAs-IRDye and subsequent NIR irradiation compared to the solely irradiated control. The outcomes of this study exhibit a noteworthy potential to foster the development of innovative clinical strategies for the management of HPV-negative head and neck carcinoma.

Frusca, V., Cavallini, C., Zamborlin, A., Drava, G., Barone, V., Gherardini, L., et al. (2024). In Vivo Combined Photoacoustic Imaging and Photothermal Treatment of HPV-Negative Head and Neck Carcinoma with NIR-Responsive Non-Persistent Plasmon Nano-Architectures. ADVANCED THERAPEUTICS [10.1002/adtp.202400110].

In Vivo Combined Photoacoustic Imaging and Photothermal Treatment of HPV-Negative Head and Neck Carcinoma with NIR-Responsive Non-Persistent Plasmon Nano-Architectures

Barone V.
Membro del Collaboration Group
;
Menichetti L.
;
2024-01-01

Abstract

The combination of photoacoustic imaging (PAI) and photothermal therapy (PTT) is an attractive approach in cancer management due to the non-invasive features combined with real-time imaging and selective tissue damage by non-ionizing radiation. This approach is especially appealing for Head and Neck Squamous Cell Carcinoma (HNSCC) management, where up to 40% of patients require modifications of the treatment regimen. On the other hand, most of the agents developed for PAI/PTT suffer from persistence or re-shaping issues. Here, a unique non-persistent plasmon nano-architecture (tNAs-IRDye) is presented that simultaneously acts as a contrast agent for PAI and as a photothermal transducer for PTT. The tNAs-IRDye are fully characterized and evaluated in vitro and ex vivo, and their performance as theranostic agents is assessed in HPV-negative HNSCC murine models. A significant modulation of tumor growth is obtained in vivo upon intratumoral injection of tNAs-IRDye and subsequent NIR irradiation compared to the solely irradiated control. The outcomes of this study exhibit a noteworthy potential to foster the development of innovative clinical strategies for the management of HPV-negative head and neck carcinoma.
2024
Frusca, V., Cavallini, C., Zamborlin, A., Drava, G., Barone, V., Gherardini, L., et al. (2024). In Vivo Combined Photoacoustic Imaging and Photothermal Treatment of HPV-Negative Head and Neck Carcinoma with NIR-Responsive Non-Persistent Plasmon Nano-Architectures. ADVANCED THERAPEUTICS [10.1002/adtp.202400110].
File in questo prodotto:
File Dimensione Formato  
Advanced Therapeutics 2024.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.58 MB
Formato Adobe PDF
2.58 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1263214