We present a new method for the construction of shape-preserving curves approximating a given set of 3D data, based on the space of "quintic like" polynomial splines with variable degrees recently introduced in [7]. These splines - which are C-3 and therefore curvature and torsion continuous - possess a very simple geometric structure, which permits to easily handle the shape-constraints.

Costantini, P., Pelosi, F. (2004). Shape-preserving approximation of spatial data. ADVANCES IN COMPUTATIONAL MATHEMATICS, 20(1-3), 25-51 [10.1023/a:1025803122254].

Shape-preserving approximation of spatial data

Costantini, Paolo;Pelosi, Francesca
2004-01-01

Abstract

We present a new method for the construction of shape-preserving curves approximating a given set of 3D data, based on the space of "quintic like" polynomial splines with variable degrees recently introduced in [7]. These splines - which are C-3 and therefore curvature and torsion continuous - possess a very simple geometric structure, which permits to easily handle the shape-constraints.
2004
Costantini, P., Pelosi, F. (2004). Shape-preserving approximation of spatial data. ADVANCES IN COMPUTATIONAL MATHEMATICS, 20(1-3), 25-51 [10.1023/a:1025803122254].
File in questo prodotto:
File Dimensione Formato  
A19-ShapePreservingApproximationSpatialData_ACM2004_CP.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 240.97 kB
Formato Adobe PDF
240.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1262058