We present a new method for the construction of shape-preserving curves approximating a given set of 3D data, based on the space of "quintic like" polynomial splines with variable degrees recently introduced in [7]. These splines - which are C-3 and therefore curvature and torsion continuous - possess a very simple geometric structure, which permits to easily handle the shape-constraints.
Costantini, P., Pelosi, F. (2004). Shape-preserving approximation of spatial data. ADVANCES IN COMPUTATIONAL MATHEMATICS, 20(1-3), 25-51 [10.1023/a:1025803122254].
Shape-preserving approximation of spatial data
Costantini, Paolo;Pelosi, Francesca
2004-01-01
Abstract
We present a new method for the construction of shape-preserving curves approximating a given set of 3D data, based on the space of "quintic like" polynomial splines with variable degrees recently introduced in [7]. These splines - which are C-3 and therefore curvature and torsion continuous - possess a very simple geometric structure, which permits to easily handle the shape-constraints.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
A19-ShapePreservingApproximationSpatialData_ACM2004_CP.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
240.97 kB
Formato
Adobe PDF
|
240.97 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11365/1262058