We propose tight bounds for the total variation measure between two centered Gaussian laws, which improve over the existing inequalities. The suggested inequalities have applications in different contexts when a high-dimensional setting is assumed.

Barabesi, L., Pratelli, L. (2024). An inequality for the total variation distance between high-dimensional centered Gaussian laws. STATISTICS & PROBABILITY LETTERS, 211, 1-5 [10.1016/j.spl.2024.110148].

An inequality for the total variation distance between high-dimensional centered Gaussian laws

Barabesi, Lucio;
2024-01-01

Abstract

We propose tight bounds for the total variation measure between two centered Gaussian laws, which improve over the existing inequalities. The suggested inequalities have applications in different contexts when a high-dimensional setting is assumed.
2024
Barabesi, L., Pratelli, L. (2024). An inequality for the total variation distance between high-dimensional centered Gaussian laws. STATISTICS & PROBABILITY LETTERS, 211, 1-5 [10.1016/j.spl.2024.110148].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0167715224001172-main.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 482.56 kB
Formato Adobe PDF
482.56 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1261017