We propose tight bounds for the total variation measure between two centered Gaussian laws, which improve over the existing inequalities. The suggested inequalities have applications in different contexts when a high-dimensional setting is assumed.
Barabesi, L., Pratelli, L. (2024). An inequality for the total variation distance between high-dimensional centered Gaussian laws. STATISTICS & PROBABILITY LETTERS, 211, 1-5 [10.1016/j.spl.2024.110148].
An inequality for the total variation distance between high-dimensional centered Gaussian laws
Barabesi, Lucio;
2024-01-01
Abstract
We propose tight bounds for the total variation measure between two centered Gaussian laws, which improve over the existing inequalities. The suggested inequalities have applications in different contexts when a high-dimensional setting is assumed.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0167715224001172-main.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
482.56 kB
Formato
Adobe PDF
|
482.56 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11365/1261017