: International Guidelines consider left ventricular ejection fraction (LVEF) as an important parameter to categorize patients with heart failure (HF) and to define recommended treatments in clinical practice. However, LVEF has some technical and clinical limitations, being derived from geometric assumptions and is unable to evaluate intrinsic myocardial function and LV filling pressure (LVFP). Moreover, it has been shown to fail to predict clinical outcome in patients with end-stage HF. The analysis of LV antegrade flow derived from pulsed-wave Doppler (stroke volume index, stroke distance, cardiac output, and cardiac index) and non-invasive evaluation of LVFP have demonstrated some advantages and prognostic implications in HF patients. Speckle tracking echocardiography (STE) is able to unmask intrinsic myocardial systolic dysfunction in HF patients, particularly in those with LV preserved EF, hence allowing analysis of LV, right ventricular and left atrial (LA) intrinsic myocardial function (global peak atrial LS, (PALS)). Global PALS has been proven a reliable index of LVFP which could fill the gaps "gray zone" in the previous Guidelines algorithm for the assessment of LV diastolic dysfunction and LVFP, being added to the latest European Association of Cardiovascular Imaging Consensus document for the use of multimodality imaging in evaluating HFpEF. The aim of this review is to highlight the importance of the hemodynamics multiparametric approach of assessing myocardial function (from LVFP to stroke volume) in patients with HF, thus overcoming the limitations of LVEF.
Lisi, M., Luisi, G.A., Pastore, M.C., Mandoli, G.E., Benfari, G., Ilardi, F., et al. (2024). New perspectives in the echocardiographic hemodynamics multiparametric assessment of patients with heart failure. HEART FAILURE REVIEWS, 29(4), 799-809 [10.1007/s10741-024-10398-7].
New perspectives in the echocardiographic hemodynamics multiparametric assessment of patients with heart failure
Lisi, Matteo;Pastore, Maria Concetta;Mandoli, Giulia Elena;Cameli, Matteo;
2024-01-01
Abstract
: International Guidelines consider left ventricular ejection fraction (LVEF) as an important parameter to categorize patients with heart failure (HF) and to define recommended treatments in clinical practice. However, LVEF has some technical and clinical limitations, being derived from geometric assumptions and is unable to evaluate intrinsic myocardial function and LV filling pressure (LVFP). Moreover, it has been shown to fail to predict clinical outcome in patients with end-stage HF. The analysis of LV antegrade flow derived from pulsed-wave Doppler (stroke volume index, stroke distance, cardiac output, and cardiac index) and non-invasive evaluation of LVFP have demonstrated some advantages and prognostic implications in HF patients. Speckle tracking echocardiography (STE) is able to unmask intrinsic myocardial systolic dysfunction in HF patients, particularly in those with LV preserved EF, hence allowing analysis of LV, right ventricular and left atrial (LA) intrinsic myocardial function (global peak atrial LS, (PALS)). Global PALS has been proven a reliable index of LVFP which could fill the gaps "gray zone" in the previous Guidelines algorithm for the assessment of LV diastolic dysfunction and LVFP, being added to the latest European Association of Cardiovascular Imaging Consensus document for the use of multimodality imaging in evaluating HFpEF. The aim of this review is to highlight the importance of the hemodynamics multiparametric approach of assessing myocardial function (from LVFP to stroke volume) in patients with HF, thus overcoming the limitations of LVEF.File | Dimensione | Formato | |
---|---|---|---|
New perspectives in the echocardiographic hemodynamics-Lisi-2024.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
PDF editoriale
Licenza:
Creative commons
Dimensione
1.43 MB
Formato
Adobe PDF
|
1.43 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1258154