The current image generative models have achieved a remarkably realistic image quality, offering numerous academic and industrial applications. However, to ensure these models are used for benign purposes, it is essential to develop tools that definitively detect whether an image has been synthetically generated. Consequently, several detectors with excellent performance in computer vision applications have been developed. However, these detectors cannot be directly applied as they areto multi-spectral satellite images, necessitating the training of new models. While two-class classifiers generally achieve high detection accuracies, they struggle to generalize to image domains and generative architectures different from those encountered during training. In this paper, we propose a one-class classifier based on Vector Quantized Variational Autoencoder 2 (VQ-VAE 2) features to overcome the limitations of two-class classifiers. We start by highlighting the generalization problem faced by binary classifiers. This was demonstrated by training and testing an EfficientNet-B4 architecture on multiple multi-spectral datasets. We then illustrate that the VQ-VAE 2-based classifier, which was trained exclusively on pristine images, could detect images from different domains and generated by architectures not encountered during training. Finally, we conducted a head-to-head comparison between the two classifiers on the same generated datasets, emphasizing the superior generalization capabilities of the VQ-VAE 2-based detector, wherewe obtained a probability of detection at a 0.05 false alarm rate of 1 for the blue and red channels when using the VQ-VAE 2-based detector, and 0.72 when we used the EfficientNet-B4 classifier.

Abady, L., Dimitri, G.M., Barni, M. (2024). A One-Class Classifier for the Detection of GAN Manipulated Multi-Spectral Satellite Images. REMOTE SENSING, 16(5) [10.3390/rs16050781].

A One-Class Classifier for the Detection of GAN Manipulated Multi-Spectral Satellite Images

Abady, Lydia
;
Dimitri, Giovanna Maria;Barni, Mauro
2024-01-01

Abstract

The current image generative models have achieved a remarkably realistic image quality, offering numerous academic and industrial applications. However, to ensure these models are used for benign purposes, it is essential to develop tools that definitively detect whether an image has been synthetically generated. Consequently, several detectors with excellent performance in computer vision applications have been developed. However, these detectors cannot be directly applied as they areto multi-spectral satellite images, necessitating the training of new models. While two-class classifiers generally achieve high detection accuracies, they struggle to generalize to image domains and generative architectures different from those encountered during training. In this paper, we propose a one-class classifier based on Vector Quantized Variational Autoencoder 2 (VQ-VAE 2) features to overcome the limitations of two-class classifiers. We start by highlighting the generalization problem faced by binary classifiers. This was demonstrated by training and testing an EfficientNet-B4 architecture on multiple multi-spectral datasets. We then illustrate that the VQ-VAE 2-based classifier, which was trained exclusively on pristine images, could detect images from different domains and generated by architectures not encountered during training. Finally, we conducted a head-to-head comparison between the two classifiers on the same generated datasets, emphasizing the superior generalization capabilities of the VQ-VAE 2-based detector, wherewe obtained a probability of detection at a 0.05 false alarm rate of 1 for the blue and red channels when using the VQ-VAE 2-based detector, and 0.72 when we used the EfficientNet-B4 classifier.
2024
Abady, L., Dimitri, G.M., Barni, M. (2024). A One-Class Classifier for the Detection of GAN Manipulated Multi-Spectral Satellite Images. REMOTE SENSING, 16(5) [10.3390/rs16050781].
File in questo prodotto:
File Dimensione Formato  
remotesensing-16-00781_.pdf

accesso aperto

Tipologia: PDF editoriale
Licenza: Creative commons
Dimensione 2.68 MB
Formato Adobe PDF
2.68 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1256956