Biochar (BC) boasts diverse environmental applications. However, its potential for environmental biomonitoring has, surprisingly, remained largely unexplored. This study presents a preliminary analysis of BC's potential as a biomonitor for the environmental availability of ionic Cd, utilizing the lichen Evernia prunastri (L.) Ach. as a reference organism. For this purpose, the lichen E. prunastri and two types of wood-derived biochar, biochar 1 (BC1) and biochar 2 (BC2), obtained from two anonymous producers, were investigated for their ability to accumulate, or sequester and subsequently release, Cd when exposed to Cd-depleted conditions. Samples of lichen and biochar (fractions between 2 and 4 mm) were soaked for 1 h in a solution containing deionized water (control), 10 mu M, and 100 mu M Cd2+ (accumulation phase). Then, 50% of the treated samples were soaked for 24 h in deionized water (depuration phase). The lichen showed a very good ability to adsorb ionic Cd, higher than the two biochar samples (more than 46.5%), and a weak ability to release the metal (ca. 6%). As compared to the lichen, BC2 showed a lower capacity for Cd accumulation (-48%) and release (ca. 3%). BC1, on the other hand, showed a slightly higher Cd accumulation capacity than BC2 (+3.6%), but a release capacity similar to that of the lichen (ca. 5%). The surface area and the cation exchange capacity of the organism and the tested materials seem to play a key role in their ability to accumulate and sequester Cd, respectively. This study suggests the potential use of BC as a (bio)monitor for the presence of PTEs in atmospheric depositions and, perhaps, water bodies.

Vannini, A., Pagano, L., Bartoli, M., Fedeli, R., Malcevschi, A., Sidoli, M., et al. (2024). Accumulation and Release of Cadmium Ions in the Lichen Evernia prunastri (L.) Ach. and Wood-Derived Biochar: Implication for the Use of Biochar for Environmental Biomonitoring. TOXICS, 12(1) [10.3390/toxics12010066].

Accumulation and Release of Cadmium Ions in the Lichen Evernia prunastri (L.) Ach. and Wood-Derived Biochar: Implication for the Use of Biochar for Environmental Biomonitoring

Fedeli R.;Loppi S.
2024-01-01

Abstract

Biochar (BC) boasts diverse environmental applications. However, its potential for environmental biomonitoring has, surprisingly, remained largely unexplored. This study presents a preliminary analysis of BC's potential as a biomonitor for the environmental availability of ionic Cd, utilizing the lichen Evernia prunastri (L.) Ach. as a reference organism. For this purpose, the lichen E. prunastri and two types of wood-derived biochar, biochar 1 (BC1) and biochar 2 (BC2), obtained from two anonymous producers, were investigated for their ability to accumulate, or sequester and subsequently release, Cd when exposed to Cd-depleted conditions. Samples of lichen and biochar (fractions between 2 and 4 mm) were soaked for 1 h in a solution containing deionized water (control), 10 mu M, and 100 mu M Cd2+ (accumulation phase). Then, 50% of the treated samples were soaked for 24 h in deionized water (depuration phase). The lichen showed a very good ability to adsorb ionic Cd, higher than the two biochar samples (more than 46.5%), and a weak ability to release the metal (ca. 6%). As compared to the lichen, BC2 showed a lower capacity for Cd accumulation (-48%) and release (ca. 3%). BC1, on the other hand, showed a slightly higher Cd accumulation capacity than BC2 (+3.6%), but a release capacity similar to that of the lichen (ca. 5%). The surface area and the cation exchange capacity of the organism and the tested materials seem to play a key role in their ability to accumulate and sequester Cd, respectively. This study suggests the potential use of BC as a (bio)monitor for the presence of PTEs in atmospheric depositions and, perhaps, water bodies.
2024
Vannini, A., Pagano, L., Bartoli, M., Fedeli, R., Malcevschi, A., Sidoli, M., et al. (2024). Accumulation and Release of Cadmium Ions in the Lichen Evernia prunastri (L.) Ach. and Wood-Derived Biochar: Implication for the Use of Biochar for Environmental Biomonitoring. TOXICS, 12(1) [10.3390/toxics12010066].
File in questo prodotto:
File Dimensione Formato  
21-Accumulation and Release of Cadmium Ions in the Lichen Evernia prunastri L. (Ach.) and Wood-Derived Biochar Implication for the Use of Biochar for Environmental Biomonitoring.pdf

accesso aperto

Tipologia: PDF editoriale
Licenza: Creative commons
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1256416