One way to study a hypergraph is to attach to it a tensor. Tensors are a generalization of matrices, and they are an efficient way to encode information in a compact form. In this paper, we study how properties of weighted hypergraphs are reflected on eigenvalues and eigenvectors of their associated tensors. We also show how to efficiently compute eigenvalues with some techniques from numerical algebraic geometry.

Galuppi, F., Mulas, R., Venturello, L. (2023). Spectral theory of weighted hypergraphs via tensors. LINEAR & MULTILINEAR ALGEBRA, 71(3), 317-347 [10.1080/03081087.2022.2030659].

Spectral theory of weighted hypergraphs via tensors

Venturello L.
2023-01-01

Abstract

One way to study a hypergraph is to attach to it a tensor. Tensors are a generalization of matrices, and they are an efficient way to encode information in a compact form. In this paper, we study how properties of weighted hypergraphs are reflected on eigenvalues and eigenvectors of their associated tensors. We also show how to efficiently compute eigenvalues with some techniques from numerical algebraic geometry.
2023
Galuppi, F., Mulas, R., Venturello, L. (2023). Spectral theory of weighted hypergraphs via tensors. LINEAR & MULTILINEAR ALGEBRA, 71(3), 317-347 [10.1080/03081087.2022.2030659].
File in questo prodotto:
File Dimensione Formato  
Spectral_theory_of_weighted_hypergraphs_via_tensors.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.58 MB
Formato Adobe PDF
2.58 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1256096