We study Voronoi diagrams of manifolds and varieties with respect to polyhedral norms. We provide upper and lower bounds on the dimensions of Voronoi cells. For algebraic varieties, we count their full-dimensional Voronoi cells. As an application, we consider the polyhedral Wasserstein distance between discrete probability distributions.

Becedas, A., Kohn, K., Venturello, L. (2024). Voronoi diagrams of algebraic varieties under polyhedral norms. JOURNAL OF SYMBOLIC COMPUTATION, 120 [10.1016/j.jsc.2023.102229].

Voronoi diagrams of algebraic varieties under polyhedral norms

Venturello L.
2024-01-01

Abstract

We study Voronoi diagrams of manifolds and varieties with respect to polyhedral norms. We provide upper and lower bounds on the dimensions of Voronoi cells. For algebraic varieties, we count their full-dimensional Voronoi cells. As an application, we consider the polyhedral Wasserstein distance between discrete probability distributions.
2024
Becedas, A., Kohn, K., Venturello, L. (2024). Voronoi diagrams of algebraic varieties under polyhedral norms. JOURNAL OF SYMBOLIC COMPUTATION, 120 [10.1016/j.jsc.2023.102229].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0747717123000366-main.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 402.06 kB
Formato Adobe PDF
402.06 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2209.11463v1.pdf

accesso aperto

Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 503.09 kB
Formato Adobe PDF
503.09 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1256091