We study Voronoi diagrams of manifolds and varieties with respect to polyhedral norms. We provide upper and lower bounds on the dimensions of Voronoi cells. For algebraic varieties, we count their full-dimensional Voronoi cells. As an application, we consider the polyhedral Wasserstein distance between discrete probability distributions.
Becedas, A., Kohn, K., Venturello, L. (2024). Voronoi diagrams of algebraic varieties under polyhedral norms. JOURNAL OF SYMBOLIC COMPUTATION, 120 [10.1016/j.jsc.2023.102229].
Voronoi diagrams of algebraic varieties under polyhedral norms
Venturello L.
2024-01-01
Abstract
We study Voronoi diagrams of manifolds and varieties with respect to polyhedral norms. We provide upper and lower bounds on the dimensions of Voronoi cells. For algebraic varieties, we count their full-dimensional Voronoi cells. As an application, we consider the polyhedral Wasserstein distance between discrete probability distributions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0747717123000366-main.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
402.06 kB
Formato
Adobe PDF
|
402.06 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2209.11463v1.pdf
accesso aperto
Tipologia:
Pre-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
503.09 kB
Formato
Adobe PDF
|
503.09 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11365/1256091