In a recent article, Duval, Goeckner, Klivans and Martin disproved the longstanding conjecture by Stanley, that every Cohen-Macaulay simplicial complex is partitionable. We construct counterexamples to this conjecture that are even balanced, i.e. their underlying graph has a minimal coloring. This answers a question by Duval et al. in the negative.

Juhnke-Kubitzke, M., Venturello, L. (2019). A balanced non-partitionable cohen-macaulay complex. ALGEBRAIC COMBINATORICS, 2(6), 1149-1157 [10.5802/alco.78].

A balanced non-partitionable cohen-macaulay complex

Venturello L.
2019-01-01

Abstract

In a recent article, Duval, Goeckner, Klivans and Martin disproved the longstanding conjecture by Stanley, that every Cohen-Macaulay simplicial complex is partitionable. We construct counterexamples to this conjecture that are even balanced, i.e. their underlying graph has a minimal coloring. This answers a question by Duval et al. in the negative.
2019
Juhnke-Kubitzke, M., Venturello, L. (2019). A balanced non-partitionable cohen-macaulay complex. ALGEBRAIC COMBINATORICS, 2(6), 1149-1157 [10.5802/alco.78].
File in questo prodotto:
File Dimensione Formato  
ALCO_2019__2_6_1149_0.pdf

accesso aperto

Tipologia: PDF editoriale
Licenza: Creative commons
Dimensione 509.01 kB
Formato Adobe PDF
509.01 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1256088