In a recent article, Duval, Goeckner, Klivans and Martin disproved the longstanding conjecture by Stanley, that every Cohen-Macaulay simplicial complex is partitionable. We construct counterexamples to this conjecture that are even balanced, i.e. their underlying graph has a minimal coloring. This answers a question by Duval et al. in the negative.
Juhnke-Kubitzke, M., Venturello, L. (2019). A balanced non-partitionable cohen-macaulay complex. ALGEBRAIC COMBINATORICS, 2(6), 1149-1157 [10.5802/alco.78].
A balanced non-partitionable cohen-macaulay complex
Venturello L.
2019-01-01
Abstract
In a recent article, Duval, Goeckner, Klivans and Martin disproved the longstanding conjecture by Stanley, that every Cohen-Macaulay simplicial complex is partitionable. We construct counterexamples to this conjecture that are even balanced, i.e. their underlying graph has a minimal coloring. This answers a question by Duval et al. in the negative.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
ALCO_2019__2_6_1149_0.pdf
accesso aperto
Tipologia:
PDF editoriale
Licenza:
Creative commons
Dimensione
509.01 kB
Formato
Adobe PDF
|
509.01 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11365/1256088