Let P be a non-degenerate polar space. In [6], we introduced an intrinsic parameter of P, called the anisotropic gap, defined as the least upper bound of the lengths of the well -ordered chains of subspaces of P containing a frame; when P is orthogonal, we also defined two other parameters of P, called the elliptic and parabolic gap, both related to the universal embedding of P. In this paper, assuming that P is an orthogonal polar space, we prove that the elliptic and parabolic gaps can be described as intrinsic invariants of P without directly appealing to the embedding.& COPY; 2023 Elsevier Inc. All rights reserved.
Cardinali, I., Giuzzi, L. (2023). On orthogonal polar spaces. LINEAR ALGEBRA AND ITS APPLICATIONS, 674, 493-518 [10.1016/j.laa.2023.06.013].
On orthogonal polar spaces
Cardinali, Ilaria;
2023-01-01
Abstract
Let P be a non-degenerate polar space. In [6], we introduced an intrinsic parameter of P, called the anisotropic gap, defined as the least upper bound of the lengths of the well -ordered chains of subspaces of P containing a frame; when P is orthogonal, we also defined two other parameters of P, called the elliptic and parabolic gap, both related to the universal embedding of P. In this paper, assuming that P is an orthogonal polar space, we prove that the elliptic and parabolic gaps can be described as intrinsic invariants of P without directly appealing to the embedding.& COPY; 2023 Elsevier Inc. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
ep-corank-revised.pdf
accesso aperto
Tipologia:
Pre-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
456.08 kB
Formato
Adobe PDF
|
456.08 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0024379523002380-main.pdf
accesso aperto
Tipologia:
PDF editoriale
Licenza:
Creative commons
Dimensione
534.78 kB
Formato
Adobe PDF
|
534.78 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1256086