We prove upper bounds for the graded Betti numbers of Stanley-Reisner rings of balanced simplicial complexes. Along the way we show bounds for Cohen-Macaulay graded rings S/I, where S is a polynomial ring and I⊆ S is a homogeneous ideal containing a certain number of generators in degree 2, including the squares of the variables. Using similar techniques we provide upper bounds for the number of linear syzygies for Stanley-Reisner rings of balanced normal pseudomanifolds. Moreover, we compute explicitly the graded Betti numbers of cross-polytopal stacked spheres, and show that they only depend on the dimension and the number of vertices, rather than also the combinatorial type.
Juhnke-Kubitzke, M., Venturello, L. (2021). Graded Betti Numbers of Balanced Simplicial Complexes. ACTA MATHEMATICA VIETNAMICA, 46(4), 839-871 [10.1007/s40306-021-00449-8].
Graded Betti Numbers of Balanced Simplicial Complexes
Venturello L.
2021-01-01
Abstract
We prove upper bounds for the graded Betti numbers of Stanley-Reisner rings of balanced simplicial complexes. Along the way we show bounds for Cohen-Macaulay graded rings S/I, where S is a polynomial ring and I⊆ S is a homogeneous ideal containing a certain number of generators in degree 2, including the squares of the variables. Using similar techniques we provide upper bounds for the number of linear syzygies for Stanley-Reisner rings of balanced normal pseudomanifolds. Moreover, we compute explicitly the graded Betti numbers of cross-polytopal stacked spheres, and show that they only depend on the dimension and the number of vertices, rather than also the combinatorial type.File | Dimensione | Formato | |
---|---|---|---|
s40306-021-00449-8.pdf
accesso aperto
Tipologia:
PDF editoriale
Licenza:
Creative commons
Dimensione
1.24 MB
Formato
Adobe PDF
|
1.24 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1256084