We investigate the question of whether any d-colorable simplicial d-polytope can be octahedralized, i.e., can be subdivided to a d-dimensional geometric cross-polytopal complex. We give a positive answer in dimension 3, with the additional property that the octahedralization introduces no new vertices on the boundary of the polytope.
Codenotti, G., Venturello, L. (2021). Octahedralizing 3-Colorable 3-Polytopes. DISCRETE & COMPUTATIONAL GEOMETRY, 66(4), 1429-1445 [10.1007/s00454-020-00262-4].
Octahedralizing 3-Colorable 3-Polytopes
Venturello L.
2021-01-01
Abstract
We investigate the question of whether any d-colorable simplicial d-polytope can be octahedralized, i.e., can be subdivided to a d-dimensional geometric cross-polytopal complex. We give a positive answer in dimension 3, with the additional property that the octahedralization introduces no new vertices on the boundary of the polytope.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s00454-020-00262-4.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
726.27 kB
Formato
Adobe PDF
|
726.27 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11365/1256079