We investigate the question of whether any d-colorable simplicial d-polytope can be octahedralized, i.e., can be subdivided to a d-dimensional geometric cross-polytopal complex. We give a positive answer in dimension 3, with the additional property that the octahedralization introduces no new vertices on the boundary of the polytope.

Codenotti, G., Venturello, L. (2021). Octahedralizing 3-Colorable 3-Polytopes. DISCRETE & COMPUTATIONAL GEOMETRY, 66(4), 1429-1445 [10.1007/s00454-020-00262-4].

Octahedralizing 3-Colorable 3-Polytopes

Venturello L.
2021-01-01

Abstract

We investigate the question of whether any d-colorable simplicial d-polytope can be octahedralized, i.e., can be subdivided to a d-dimensional geometric cross-polytopal complex. We give a positive answer in dimension 3, with the additional property that the octahedralization introduces no new vertices on the boundary of the polytope.
2021
Codenotti, G., Venturello, L. (2021). Octahedralizing 3-Colorable 3-Polytopes. DISCRETE & COMPUTATIONAL GEOMETRY, 66(4), 1429-1445 [10.1007/s00454-020-00262-4].
File in questo prodotto:
File Dimensione Formato  
s00454-020-00262-4.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 726.27 kB
Formato Adobe PDF
726.27 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1256079