An independence model for discrete random variables is a Segre-Veronese variety in a probability simplex. Any metric on the set of joint states of the random variables induces a Wasserstein metric on the probability simplex. The unit ball of this polyhedral norm is dual to the Lipschitz polytope. Given any data distribution, we seek to minimize its Wasserstein distance to a fixed independence model. The solution to this optimization problem is a piecewise algebraic function of the data. We compute this function explicitly in small instances, we study its combinatorial structure and algebraic degrees in general, and we present some experimental case studies.

Celik, T.O., Jamneshan, A., Montufar, G., Sturmfels, B., Venturello, L. (2021). Wasserstein distance to independence models. JOURNAL OF SYMBOLIC COMPUTATION, 104, 855-873 [10.1016/j.jsc.2020.10.005].

Wasserstein distance to independence models

Venturello L.
2021-01-01

Abstract

An independence model for discrete random variables is a Segre-Veronese variety in a probability simplex. Any metric on the set of joint states of the random variables induces a Wasserstein metric on the probability simplex. The unit ball of this polyhedral norm is dual to the Lipschitz polytope. Given any data distribution, we seek to minimize its Wasserstein distance to a fixed independence model. The solution to this optimization problem is a piecewise algebraic function of the data. We compute this function explicitly in small instances, we study its combinatorial structure and algebraic degrees in general, and we present some experimental case studies.
2021
Celik, T.O., Jamneshan, A., Montufar, G., Sturmfels, B., Venturello, L. (2021). Wasserstein distance to independence models. JOURNAL OF SYMBOLIC COMPUTATION, 104, 855-873 [10.1016/j.jsc.2020.10.005].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0747717120301152-main.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 591.46 kB
Formato Adobe PDF
591.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2003.06725.pdf

accesso aperto

Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 535.78 kB
Formato Adobe PDF
535.78 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1256078