A classical result by Pachner states that two d-dimensional combinatorial manifolds with boundary are PL homeomorphic if and only if they can be connected by a sequence of shellings and inverse shellings. We prove that for balanced, i.e., properly (d+1)-colored, manifolds such a sequence can be chosen such that balancedness is preserved in each step. As a key ingredient we establish that any two balanced PL homeomorphic combinatorial manifolds with the same boundary are connected by a sequence of basic cross-flips, as was shown recently by Izmestiev, Klee and Novik for balanced manifolds without boundary. Moreover, we enumerate combinatorially different basic cross-flips and show that roughly half of these suffice to relate any two PL homeomorphic manifolds.
Juhnke-Kubitzke, M., Venturello, L. (2021). Balanced shellings and moves on balanced manifolds. ADVANCES IN MATHEMATICS, 379 [10.1016/j.aim.2021.107571].
Balanced shellings and moves on balanced manifolds
Venturello L.
2021-01-01
Abstract
A classical result by Pachner states that two d-dimensional combinatorial manifolds with boundary are PL homeomorphic if and only if they can be connected by a sequence of shellings and inverse shellings. We prove that for balanced, i.e., properly (d+1)-colored, manifolds such a sequence can be chosen such that balancedness is preserved in each step. As a key ingredient we establish that any two balanced PL homeomorphic combinatorial manifolds with the same boundary are connected by a sequence of basic cross-flips, as was shown recently by Izmestiev, Klee and Novik for balanced manifolds without boundary. Moreover, we enumerate combinatorially different basic cross-flips and show that roughly half of these suffice to relate any two PL homeomorphic manifolds.File | Dimensione | Formato | |
---|---|---|---|
1804.06270.pdf
accesso aperto
Tipologia:
Pre-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
672.53 kB
Formato
Adobe PDF
|
672.53 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0001870821000098-main.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
850.72 kB
Formato
Adobe PDF
|
850.72 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1256077