We study schemes of tensor eigenvectors from an algebraic and geometric viewpoint. We characterize determinantal defining equations of such eigenschemes via linear equations in their coefficients, both in the general and in the symmetric case. We give a geometric necessary condition for a 0-dimensional scheme to be an eigenscheme.

Beorchia, V., Galuppi, F., Venturello, L. (2024). Equations of tensor Eigenschemes. MATHEMATICS OF COMPUTATION, 93(346), 589-602 [10.1090/mcom/3882].

Equations of tensor Eigenschemes

Venturello L.
2024-01-01

Abstract

We study schemes of tensor eigenvectors from an algebraic and geometric viewpoint. We characterize determinantal defining equations of such eigenschemes via linear equations in their coefficients, both in the general and in the symmetric case. We give a geometric necessary condition for a 0-dimensional scheme to be an eigenscheme.
2024
Beorchia, V., Galuppi, F., Venturello, L. (2024). Equations of tensor Eigenschemes. MATHEMATICS OF COMPUTATION, 93(346), 589-602 [10.1090/mcom/3882].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1256076