Background: 1 H-magnetic resonance spectroscopy (1 H-MRS) may provide a direct index for the testing of medicines for neuroprotection and drug mechanisms in multiple sclerosis (MS) through measures of total N-acetyl-aspartate (tNAA), total creatine (tCr), myo-inositol (mIns), total-choline (tCho), and glutamate + glutamine (Glx). Neurometabolites may be associated with clinical disability with evidence that baseline neuroaxonal integrity is associated with upper limb function and processing speed in secondary progressive MS (SPMS). Purpose: To assess the effect on neurometabolites from three candidate drugs after 96-weeks as seen by 1 H-MRS and their association with clinical disability in SPMS. Study-type: Longitudinal. Population: 108 participants with SPMS randomized to receive neuroprotective drugs amiloride [mean age 55.4 (SD 7.4), 61% female], fluoxetine [55.6 (6.6), 71%], riluzole [54.6 (6.3), 68%], or placebo [54.8 (7.9), 67%]. Field strength/sequence: 3-Tesla. Chemical-shift-imaging 2D-point-resolved-spectroscopy (PRESS), 3DT1. Assessment: Brain metabolites in normal appearing white matter (NAWM) and gray matter (GM), brain volume, lesion load, nine-hole peg test (9HPT), and paced auditory serial addition test were measured at baseline and at 96-weeks. Statistical tests: Paired t-test was used to analyze metabolite changes in the placebo arm over 96-weeks. Metabolite differences between treatment arms and placebo; and associations between baseline metabolites and upper limb function/information processing speed at 96-weeks assessed using multiple linear regression models. P-value<0.05 was considered statistically significant. Results: In the placebo arm, tCho increased in GM (mean difference = -0.32 IU) but decreased in NAWM (mean difference = 0.13 IU). Compared to placebo, in the fluoxetine arm, mIns/tCr was lower (β = -0.21); in the riluzole arm, GM Glx (β = -0.25) and Glx/tCr (β = -0.29) were reduced. Baseline tNAA(β = 0.22) and tNAA/tCr (β = 0.23) in NAWM were associated with 9HPT scores at 96-weeks. Data conclusion: 1 H-MRS demonstrated altered membrane turnover over 96-weeks in the placebo group. It also distinguished changes in neuro-metabolites related to gliosis and glutaminergic transmission, due to fluoxetine and riluzole, respectively. Data show tNAA is a potential marker for upper limb function. Level of evidence: 1 TECHNICAL EFFICACY: Stage 4.

John, N.A., Solanky, B.S., De Angelis, F., Parker, R.A., Weir, C.J., Stutters, J., et al. (2023). Longitudinal Metabolite Changes in Progressive Multiple Sclerosis: A Study of 3 Potential Neuroprotective Treatments. JOURNAL OF MAGNETIC RESONANCE IMAGING, 1-10 [10.1002/jmri.29017].

Longitudinal Metabolite Changes in Progressive Multiple Sclerosis: A Study of 3 Potential Neuroprotective Treatments

Plantone, Domenico;
2023-01-01

Abstract

Background: 1 H-magnetic resonance spectroscopy (1 H-MRS) may provide a direct index for the testing of medicines for neuroprotection and drug mechanisms in multiple sclerosis (MS) through measures of total N-acetyl-aspartate (tNAA), total creatine (tCr), myo-inositol (mIns), total-choline (tCho), and glutamate + glutamine (Glx). Neurometabolites may be associated with clinical disability with evidence that baseline neuroaxonal integrity is associated with upper limb function and processing speed in secondary progressive MS (SPMS). Purpose: To assess the effect on neurometabolites from three candidate drugs after 96-weeks as seen by 1 H-MRS and their association with clinical disability in SPMS. Study-type: Longitudinal. Population: 108 participants with SPMS randomized to receive neuroprotective drugs amiloride [mean age 55.4 (SD 7.4), 61% female], fluoxetine [55.6 (6.6), 71%], riluzole [54.6 (6.3), 68%], or placebo [54.8 (7.9), 67%]. Field strength/sequence: 3-Tesla. Chemical-shift-imaging 2D-point-resolved-spectroscopy (PRESS), 3DT1. Assessment: Brain metabolites in normal appearing white matter (NAWM) and gray matter (GM), brain volume, lesion load, nine-hole peg test (9HPT), and paced auditory serial addition test were measured at baseline and at 96-weeks. Statistical tests: Paired t-test was used to analyze metabolite changes in the placebo arm over 96-weeks. Metabolite differences between treatment arms and placebo; and associations between baseline metabolites and upper limb function/information processing speed at 96-weeks assessed using multiple linear regression models. P-value<0.05 was considered statistically significant. Results: In the placebo arm, tCho increased in GM (mean difference = -0.32 IU) but decreased in NAWM (mean difference = 0.13 IU). Compared to placebo, in the fluoxetine arm, mIns/tCr was lower (β = -0.21); in the riluzole arm, GM Glx (β = -0.25) and Glx/tCr (β = -0.29) were reduced. Baseline tNAA(β = 0.22) and tNAA/tCr (β = 0.23) in NAWM were associated with 9HPT scores at 96-weeks. Data conclusion: 1 H-MRS demonstrated altered membrane turnover over 96-weeks in the placebo group. It also distinguished changes in neuro-metabolites related to gliosis and glutaminergic transmission, due to fluoxetine and riluzole, respectively. Data show tNAA is a potential marker for upper limb function. Level of evidence: 1 TECHNICAL EFFICACY: Stage 4.
2023
John, N.A., Solanky, B.S., De Angelis, F., Parker, R.A., Weir, C.J., Stutters, J., et al. (2023). Longitudinal Metabolite Changes in Progressive Multiple Sclerosis: A Study of 3 Potential Neuroprotective Treatments. JOURNAL OF MAGNETIC RESONANCE IMAGING, 1-10 [10.1002/jmri.29017].
File in questo prodotto:
File Dimensione Formato  
Magnetic Resonance Imaging - 2023 - John - Longitudinal Metabolite Changes in Progressive Multiple Sclerosis A Study of 3.pdf

accesso aperto

Descrizione: Articolo
Tipologia: PDF editoriale
Licenza: Creative commons
Dimensione 810.85 kB
Formato Adobe PDF
810.85 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1246734