The paper considers a class of discrete-time cellular neural networks (DT-CNNs) obtained by applying Euler's discretization scheme to standard CNNs. Let T be the DT-CNN interconnection matrix which is defined by the feedback cloning template. The paper shows that a DT-CNN is convergent, i.e. each solution tends to an equilibrium point, when T is symmetric and, in the case where T + En is not positive-semidefinite, the step size of Euler's discretization scheme does not exceed a given bound (En is the n × n unit matrix). It is shown that two relevant properties hold as a consequence of the local and space-invariant interconnecting structure of a DT-CNN, namely: (1) the bound on the step size can be easily estimated via the elements of the DT-CNN feedback cloning template only; (2) the bound is independent of the DT-CNN dimension. These two properties make DT-CNNs very effective in view of computer simulations and for the practical applications to high-dimensional processing tasks. The obtained results are proved via Lyapunov approach and LaSalle's Invariance Principle in combination with some fundamental inequalities enjoyed by the projection operator on a convex set. The results are compared with previous ones in the literature on the convergence of DT-CNNs and also with those obtained for different neural network models as the Brain-State-in-a-Box model. Finally, the results on convergence are illustrated via the application to some relevant 2D and 1D DT-CNNs for image processing tasks.
Di Marco, M., Forti, M., Pancioni, L., Tesi, A. (2023). Convergence of Discrete-Time Cellular Neural Networks with Application to Image Processing. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS IN APPLIED SCIENCES AND ENGINEERING, 33(10) [10.1142/S0218127423501158].
Convergence of Discrete-Time Cellular Neural Networks with Application to Image Processing
Di Marco M.;Forti M.
;Pancioni L.;
2023-01-01
Abstract
The paper considers a class of discrete-time cellular neural networks (DT-CNNs) obtained by applying Euler's discretization scheme to standard CNNs. Let T be the DT-CNN interconnection matrix which is defined by the feedback cloning template. The paper shows that a DT-CNN is convergent, i.e. each solution tends to an equilibrium point, when T is symmetric and, in the case where T + En is not positive-semidefinite, the step size of Euler's discretization scheme does not exceed a given bound (En is the n × n unit matrix). It is shown that two relevant properties hold as a consequence of the local and space-invariant interconnecting structure of a DT-CNN, namely: (1) the bound on the step size can be easily estimated via the elements of the DT-CNN feedback cloning template only; (2) the bound is independent of the DT-CNN dimension. These two properties make DT-CNNs very effective in view of computer simulations and for the practical applications to high-dimensional processing tasks. The obtained results are proved via Lyapunov approach and LaSalle's Invariance Principle in combination with some fundamental inequalities enjoyed by the projection operator on a convex set. The results are compared with previous ones in the literature on the convergence of DT-CNNs and also with those obtained for different neural network models as the Brain-State-in-a-Box model. Finally, the results on convergence are illustrated via the application to some relevant 2D and 1D DT-CNNs for image processing tasks.File | Dimensione | Formato | |
---|---|---|---|
di-marco-et-al-2023-convergence-of-discrete-time-cellular-neural-networks-with-application-to-image-processing.pdf
accesso aperto
Tipologia:
PDF editoriale
Licenza:
Creative commons
Dimensione
3.78 MB
Formato
Adobe PDF
|
3.78 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1245496