In Gram-negative bacteria, the major mechanism of resistance to beta-lactam antibiotics is the production of one or several beta-lactamases (BLs), including the highly worrying carbapenemases. Whereas inhibitors of these enzymes were recently marketed, they only target serine-carbapenemases (e.g. KPC-type), and no clinically useful inhibitor is available yet to neutralize the class of metallo-beta-lactamases (MBLs). We are developing compounds based on the 1,2,4-triazole-3-thione scaffold, which binds to the di-zinc catalytic site of MBLs in an original fashion, and we previously reported its promising potential to yield broad-spectrum inhibitors. However, up to now only moderate antibiotic potentiation could be observed in microbiological assays and further exploration was needed to improve outer membrane penetration. Here, we synthesized and characterized a series of compounds possessing a diversely functionalized alkyl chain at the 4-position of the heterocycle. We found that the presence of a carboxylic group at the extremity of an alkyl chain yielded potent inhibitors of VIM-type enzymes with Ki values in the mu M to sub-mu M range, and that this alkyl chain had to be longer or equal to a propyl chain. This result confirmed the importance of a carboxylic function on the 4-substituent of 1,2,4-triazole-3-thione heterocycle. As observed in previous series, active compounds also preferentially contained phenyl, 2-hydroxy-5-methoxyphenyl, naphth-2-yl or m-biphenyl at position 5. However, none efficiently inhibited NDM-1 or IMP-1. Microbiological study on VIM-2-producing E. coli strains and on VIM-1/VIM-4-producing multidrugresistant K. pneumoniae clinical isolates gave promising results, suggesting that the 1,2,4-triazole-3-thione scaffold worth continuing exploration to further improve penetration. Finally, docking experiments were performed to study the binding mode of alkanoic analogues in the active site of VIM-2.

Gavara, L., Legru, A., Verdirosa, F., Sevaille, L., Nauton, L., Corsica, G., et al. (2021). 4-Alkyl-1,2,4-triazole-3-thione analogues as metallo-β-lactamase inhibitors. BIOORGANIC CHEMISTRY, 113, 1-14 [10.1016/j.bioorg.2021.105024].

4-Alkyl-1,2,4-triazole-3-thione analogues as metallo-β-lactamase inhibitors

Sannio, Filomena;De Luca, Filomena;Tanfoni, Silvia;Docquier, Jean-Denis
;
2021-01-01

Abstract

In Gram-negative bacteria, the major mechanism of resistance to beta-lactam antibiotics is the production of one or several beta-lactamases (BLs), including the highly worrying carbapenemases. Whereas inhibitors of these enzymes were recently marketed, they only target serine-carbapenemases (e.g. KPC-type), and no clinically useful inhibitor is available yet to neutralize the class of metallo-beta-lactamases (MBLs). We are developing compounds based on the 1,2,4-triazole-3-thione scaffold, which binds to the di-zinc catalytic site of MBLs in an original fashion, and we previously reported its promising potential to yield broad-spectrum inhibitors. However, up to now only moderate antibiotic potentiation could be observed in microbiological assays and further exploration was needed to improve outer membrane penetration. Here, we synthesized and characterized a series of compounds possessing a diversely functionalized alkyl chain at the 4-position of the heterocycle. We found that the presence of a carboxylic group at the extremity of an alkyl chain yielded potent inhibitors of VIM-type enzymes with Ki values in the mu M to sub-mu M range, and that this alkyl chain had to be longer or equal to a propyl chain. This result confirmed the importance of a carboxylic function on the 4-substituent of 1,2,4-triazole-3-thione heterocycle. As observed in previous series, active compounds also preferentially contained phenyl, 2-hydroxy-5-methoxyphenyl, naphth-2-yl or m-biphenyl at position 5. However, none efficiently inhibited NDM-1 or IMP-1. Microbiological study on VIM-2-producing E. coli strains and on VIM-1/VIM-4-producing multidrugresistant K. pneumoniae clinical isolates gave promising results, suggesting that the 1,2,4-triazole-3-thione scaffold worth continuing exploration to further improve penetration. Finally, docking experiments were performed to study the binding mode of alkanoic analogues in the active site of VIM-2.
2021
Gavara, L., Legru, A., Verdirosa, F., Sevaille, L., Nauton, L., Corsica, G., et al. (2021). 4-Alkyl-1,2,4-triazole-3-thione analogues as metallo-β-lactamase inhibitors. BIOORGANIC CHEMISTRY, 113, 1-14 [10.1016/j.bioorg.2021.105024].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0045206821004016-main(2).pdf

non disponibili

Descrizione: Full text
Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.61 MB
Formato Adobe PDF
2.61 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1244878