The paper studies the problem of reconstructing binary matrices constrained by binary tomographic information. We prove new N P-hardness results that sharpen previous complexity results in the realm of discrete tomography but also allow applications to related problems for permutation matrices. Hence our results can be interpreted in terms of other combinatorial problems including the queens' problem.
Brunetti, S., DEL LUNGO, A., Gritzmann, P., DE VRIES, S. (2008). On the reconstruction of binary and permutation matrices under (binary) tomographic constraints. THEORETICAL COMPUTER SCIENCE, 406, 63-71.
On the reconstruction of binary and permutation matrices under (binary) tomographic constraints
BRUNETTI, SARA;
2008-01-01
Abstract
The paper studies the problem of reconstructing binary matrices constrained by binary tomographic information. We prove new N P-hardness results that sharpen previous complexity results in the realm of discrete tomography but also allow applications to related problems for permutation matrices. Hence our results can be interpreted in terms of other combinatorial problems including the queens' problem.File | Dimensione | Formato | |
---|---|---|---|
BDGdVTCS08.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
436.11 kB
Formato
Adobe PDF
|
436.11 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/12418
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo