The paper studies the problem of reconstructing binary matrices constrained by binary tomographic information. We prove new N P-hardness results that sharpen previous complexity results in the realm of discrete tomography but also allow applications to related problems for permutation matrices. Hence our results can be interpreted in terms of other combinatorial problems including the queens' problem.

Brunetti, S., DEL LUNGO, A., Gritzmann, P., & DE VRIES, S. (2008). On the reconstruction of binary and permutation matrices under (binary) tomographic constraints. THEORETICAL COMPUTER SCIENCE, 406, 63-71.

On the reconstruction of binary and permutation matrices under (binary) tomographic constraints

BRUNETTI, SARA;
2008

Abstract

The paper studies the problem of reconstructing binary matrices constrained by binary tomographic information. We prove new N P-hardness results that sharpen previous complexity results in the realm of discrete tomography but also allow applications to related problems for permutation matrices. Hence our results can be interpreted in terms of other combinatorial problems including the queens' problem.
Brunetti, S., DEL LUNGO, A., Gritzmann, P., & DE VRIES, S. (2008). On the reconstruction of binary and permutation matrices under (binary) tomographic constraints. THEORETICAL COMPUTER SCIENCE, 406, 63-71.
File in questo prodotto:
File Dimensione Formato  
BDGdVTCS08.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 436.11 kB
Formato Adobe PDF
436.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11365/12418
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo