In this paper, we present a method to inductively construct Gorenstein ideals of any codimension c. We start from a Gorenstein ideal I of codimension c contained in a complete intersection ideal J of the same codimension, and we prove that under suitable hypotheses there exists a new Gorenstein ideal contained in the residual ideal I : J. We compare some numerical data of the starting and the resulting Gorenstein ideals of the construction. We compare also the Buchsbaum-Eisenbud matrices of the two ideals, in the codimension three case. Furthermore, we show that this construction is independent from the other known geometrical constructions of Gorenstein ideals, providing examples.

Bocci, C., Dalzotto, G., Notari, R., Spreafico, M.L. (2005). An iterative construction of Gorenstein Ideals. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 357(4), 1417-1444 [10.1090/S0002-9947-04-03521-4].

An iterative construction of Gorenstein Ideals

BOCCI, CRISTIANO;
2005-01-01

Abstract

In this paper, we present a method to inductively construct Gorenstein ideals of any codimension c. We start from a Gorenstein ideal I of codimension c contained in a complete intersection ideal J of the same codimension, and we prove that under suitable hypotheses there exists a new Gorenstein ideal contained in the residual ideal I : J. We compare some numerical data of the starting and the resulting Gorenstein ideals of the construction. We compare also the Buchsbaum-Eisenbud matrices of the two ideals, in the codimension three case. Furthermore, we show that this construction is independent from the other known geometrical constructions of Gorenstein ideals, providing examples.
2005
Bocci, C., Dalzotto, G., Notari, R., Spreafico, M.L. (2005). An iterative construction of Gorenstein Ideals. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 357(4), 1417-1444 [10.1090/S0002-9947-04-03521-4].
File in questo prodotto:
File Dimensione Formato  
iterative.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 6.09 MB
Formato Adobe PDF
6.09 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/12409
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo