A new approach based on censoring and moment criterion is introduced for parameter estimation of count distributions when the probability generating function is available even though a closed form of the probability mass function and/or finite moments do not exist.

Di Noia, A., Marcheselli, M., Pisani, C., Pratelli, L. (2023). Censoring heavy-tail count distributions for parameter estimation with an application to stable distributions. STATISTICS & PROBABILITY LETTERS, 202, 1-5 [10.1016/j.spl.2023.109903].

Censoring heavy-tail count distributions for parameter estimation with an application to stable distributions

Marcheselli, Marzia;Pisani, Caterina
;
2023-01-01

Abstract

A new approach based on censoring and moment criterion is introduced for parameter estimation of count distributions when the probability generating function is available even though a closed form of the probability mass function and/or finite moments do not exist.
2023
Di Noia, A., Marcheselli, M., Pisani, C., Pratelli, L. (2023). Censoring heavy-tail count distributions for parameter estimation with an application to stable distributions. STATISTICS & PROBABILITY LETTERS, 202, 1-5 [10.1016/j.spl.2023.109903].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S016771522300127X-main.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 362.33 kB
Formato Adobe PDF
362.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1237994