A generalization of a classical discrete tomography problem is considered: reconstruct three-dimensional lattice sets from their two-dimensional X-rays parallel to three coordinate planes. First, we prove that this reconstruction problem is NP-hard. Then we propose some greedy algorithms that provide approximate solutions of the problem.
Brunetti, S., DEL LUNGO, A., Gerard, Y. (2001). On the computational complexity of determining three dimensional lattice sets from their three dimensional X-rays. LINEAR ALGEBRA AND ITS APPLICATIONS, 339(1-3), 59-73 [10.1016/S0024-3795(01)00437-2].
On the computational complexity of determining three dimensional lattice sets from their three dimensional X-rays
BRUNETTI S.;
2001-01-01
Abstract
A generalization of a classical discrete tomography problem is considered: reconstruct three-dimensional lattice sets from their two-dimensional X-rays parallel to three coordinate planes. First, we prove that this reconstruction problem is NP-hard. Then we propose some greedy algorithms that provide approximate solutions of the problem.File | Dimensione | Formato | |
---|---|---|---|
BDGLAA01.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
147.63 kB
Formato
Adobe PDF
|
147.63 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/12357
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo