A generalization of a classical discrete tomography problem is considered: reconstruct three-dimensional lattice sets from their two-dimensional X-rays parallel to three coordinate planes. First, we prove that this reconstruction problem is NP-hard. Then we propose some greedy algorithms that provide approximate solutions of the problem.

Brunetti, S., DEL LUNGO, A., & Gerard, Y. (2001). On the computational complexity of determining three dimensional lattice sets from their three dimensional X-rays. LINEAR ALGEBRA AND ITS APPLICATIONS, 339, 59-73.

On the computational complexity of determining three dimensional lattice sets from their three dimensional X-rays

BRUNETTI, SARA;
2001

Abstract

A generalization of a classical discrete tomography problem is considered: reconstruct three-dimensional lattice sets from their two-dimensional X-rays parallel to three coordinate planes. First, we prove that this reconstruction problem is NP-hard. Then we propose some greedy algorithms that provide approximate solutions of the problem.
Brunetti, S., DEL LUNGO, A., & Gerard, Y. (2001). On the computational complexity of determining three dimensional lattice sets from their three dimensional X-rays. LINEAR ALGEBRA AND ITS APPLICATIONS, 339, 59-73.
File in questo prodotto:
File Dimensione Formato  
BDGLAA01.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 147.63 kB
Formato Adobe PDF
147.63 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11365/12357
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo