A generalization of a classical discrete tomography problem is considered: reconstruct three-dimensional lattice sets from their two-dimensional X-rays parallel to three coordinate planes. First, we prove that this reconstruction problem is NP-hard. Then we propose some greedy algorithms that provide approximate solutions of the problem.

Brunetti, S., DEL LUNGO, A., Gerard, Y. (2001). On the computational complexity of determining three dimensional lattice sets from their three dimensional X-rays. LINEAR ALGEBRA AND ITS APPLICATIONS, 339(1-3), 59-73 [10.1016/S0024-3795(01)00437-2].

On the computational complexity of determining three dimensional lattice sets from their three dimensional X-rays

BRUNETTI S.;
2001-01-01

Abstract

A generalization of a classical discrete tomography problem is considered: reconstruct three-dimensional lattice sets from their two-dimensional X-rays parallel to three coordinate planes. First, we prove that this reconstruction problem is NP-hard. Then we propose some greedy algorithms that provide approximate solutions of the problem.
2001
Brunetti, S., DEL LUNGO, A., Gerard, Y. (2001). On the computational complexity of determining three dimensional lattice sets from their three dimensional X-rays. LINEAR ALGEBRA AND ITS APPLICATIONS, 339(1-3), 59-73 [10.1016/S0024-3795(01)00437-2].
File in questo prodotto:
File Dimensione Formato  
BDGLAA01.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 147.63 kB
Formato Adobe PDF
147.63 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/12357
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo