Fagus sylvatica is one of the most representative trees of the European deciduous broadleaved forests, yet the impact of changing climatic conditions and anthropogenic pressures (anthromes) on its presence and distribution in the coastal and lowland areas of the Mediterranean Basin has long been overlooked. Here, we first analysed the local forest composition in two different time intervals (350-300 Before Current Era, BCE and 150-100 BCE) using charred wood remains from the Etruscan site of Cetamura (Tuscany, central Italy). Addition-ally, we reviewed all the relevant publications and the wood/charcoal data obtained from anthracological analysis in F. sylvatica, focusing on samples that date back to 4000 years before present, to better understand the drivers of beech presence and distribution during the Late Holocene (LH) in the Italian Peninsula. Then, we combined charcoal and spa-tial analyses to test the distribution of beech woodland at low elevation during LH in Italy and to evaluate the effect of climate change and/or anthrome on the disappearance of F. sylvatica from the lowlands. We collected 1383 charcoal fragments in Cetamura belonging to 21 woody taxa, with F. sylvatica being the most abun-dant species (28 %), followed by other broadleaved trees. We identified 25 sites in the Italian Peninsula with beech charcoals in the last 4000 years. Our spatial analyses showed a marked decrease in habitat suitability of F. sylvatica from LH to the present (ca. 48 %), particularly in the lowlands (0-300 m above sea level, a.s.l.) and at higher altitudes (>900 m a.s.l). In the lowland areas, where F. sylvatica has disappeared, climate had a more uniform effect on beech distribution patterns across the entire elevation range analysed, whereas climate + anthrome and anthrome alone in-fluenced 69 % and 84 % of the lowland areas, respectively. Our results highlight the advantage of combining different approaches, such as charcoal analysis and spatial analyses, to explore biogeographic questions about the past and current distribution of F. sylvatica, with important implications for today's forest management and conservation policies and practices, as well as for future research projects.

Buonincontri, M.P., Bosso, L., Smeraldo, S., Chiusano, M.L., Pasta, S., Di Pasquale, G. (2023). Shedding light on the effects of climate and anthropogenic pressures on the disappearance of Fagus sylvatica in the Italian lowlands: evidence from archaeo-anthracology and spatial analyses. SCIENCE OF THE TOTAL ENVIRONMENT, 877 [10.1016/j.scitotenv.2023.162893].

Shedding light on the effects of climate and anthropogenic pressures on the disappearance of Fagus sylvatica in the Italian lowlands: evidence from archaeo-anthracology and spatial analyses

Buonincontri, Mauro Paolo
Conceptualization
;
2023-01-01

Abstract

Fagus sylvatica is one of the most representative trees of the European deciduous broadleaved forests, yet the impact of changing climatic conditions and anthropogenic pressures (anthromes) on its presence and distribution in the coastal and lowland areas of the Mediterranean Basin has long been overlooked. Here, we first analysed the local forest composition in two different time intervals (350-300 Before Current Era, BCE and 150-100 BCE) using charred wood remains from the Etruscan site of Cetamura (Tuscany, central Italy). Addition-ally, we reviewed all the relevant publications and the wood/charcoal data obtained from anthracological analysis in F. sylvatica, focusing on samples that date back to 4000 years before present, to better understand the drivers of beech presence and distribution during the Late Holocene (LH) in the Italian Peninsula. Then, we combined charcoal and spa-tial analyses to test the distribution of beech woodland at low elevation during LH in Italy and to evaluate the effect of climate change and/or anthrome on the disappearance of F. sylvatica from the lowlands. We collected 1383 charcoal fragments in Cetamura belonging to 21 woody taxa, with F. sylvatica being the most abun-dant species (28 %), followed by other broadleaved trees. We identified 25 sites in the Italian Peninsula with beech charcoals in the last 4000 years. Our spatial analyses showed a marked decrease in habitat suitability of F. sylvatica from LH to the present (ca. 48 %), particularly in the lowlands (0-300 m above sea level, a.s.l.) and at higher altitudes (>900 m a.s.l). In the lowland areas, where F. sylvatica has disappeared, climate had a more uniform effect on beech distribution patterns across the entire elevation range analysed, whereas climate + anthrome and anthrome alone in-fluenced 69 % and 84 % of the lowland areas, respectively. Our results highlight the advantage of combining different approaches, such as charcoal analysis and spatial analyses, to explore biogeographic questions about the past and current distribution of F. sylvatica, with important implications for today's forest management and conservation policies and practices, as well as for future research projects.
2023
Buonincontri, M.P., Bosso, L., Smeraldo, S., Chiusano, M.L., Pasta, S., Di Pasquale, G. (2023). Shedding light on the effects of climate and anthropogenic pressures on the disappearance of Fagus sylvatica in the Italian lowlands: evidence from archaeo-anthracology and spatial analyses. SCIENCE OF THE TOTAL ENVIRONMENT, 877 [10.1016/j.scitotenv.2023.162893].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1233095