We report upon the numerical computation of the Euler characteristic chi (a topologic invariant) of the equipotential hypersurfaces Sigma(v), of the configuration space of the two-dimensional lattice phi(4) model. The pattern chi(Sigma(v)) versus v (potential energy) reveals that a major topology change in the family {Sigma(v)}(v is an element of R) is at the origin of the phase transition in the model considered. The direct evidence given here-of the relevance of topology for phase transitions-is obtained through a general method that can be applied to any other model.
Franzosi, R., Pettini, M., Spinelli, L. (2000). Topology and phase transitions: Paradigmatic evidence. PHYSICAL REVIEW LETTERS, 84(13), 2774-2777 [10.1103/PhysRevLett.84.2774].
Topology and phase transitions: Paradigmatic evidence
Franzosi, R.;
2000-01-01
Abstract
We report upon the numerical computation of the Euler characteristic chi (a topologic invariant) of the equipotential hypersurfaces Sigma(v), of the configuration space of the two-dimensional lattice phi(4) model. The pattern chi(Sigma(v)) versus v (potential energy) reveals that a major topology change in the family {Sigma(v)}(v is an element of R) is at the origin of the phase transition in the model considered. The direct evidence given here-of the relevance of topology for phase transitions-is obtained through a general method that can be applied to any other model.File | Dimensione | Formato | |
---|---|---|---|
FranzPettSpin_PRL_84_00.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
91.51 kB
Formato
Adobe PDF
|
91.51 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
franzosi.pdf
accesso aperto
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
179.95 kB
Formato
Adobe PDF
|
179.95 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1231277