For physical systems described by smooth, finite-range, and confining microscopic interaction potentials [Formula presented] with continuously varying coordinates, we announce and outline the proof of a theorem that establishes that, unless the equipotential hypersurfaces of configuration space [Formula presented], [Formula presented], change topology at some [Formula presented] in a given interval [Formula presented] of values [Formula presented] of [Formula presented], the Helmoltz free energy must be at least twice differentiable in the corresponding interval of inverse temperature [Formula presented] also in the [Formula presented] limit. Thus, the occurrence of a phase transition at some [Formula presented] is necessarily the consequence of the loss of diffeomorphicity among the [Formula presented] and the [Formula presented], which is the consequence of the existence of critical points of [Formula presented] on [Formula presented], that is, points where [Formula presented]. © 2004 The American Physical Society.

Franzosi, R., Pettini, M. (2004). Theorem on the Origin of Phase Transitions. PHYSICAL REVIEW LETTERS, 92(6) [10.1103/PhysRevLett.92.060601].

Theorem on the Origin of Phase Transitions

Franzosi, R.;
2004-01-01

Abstract

For physical systems described by smooth, finite-range, and confining microscopic interaction potentials [Formula presented] with continuously varying coordinates, we announce and outline the proof of a theorem that establishes that, unless the equipotential hypersurfaces of configuration space [Formula presented], [Formula presented], change topology at some [Formula presented] in a given interval [Formula presented] of values [Formula presented] of [Formula presented], the Helmoltz free energy must be at least twice differentiable in the corresponding interval of inverse temperature [Formula presented] also in the [Formula presented] limit. Thus, the occurrence of a phase transition at some [Formula presented] is necessarily the consequence of the loss of diffeomorphicity among the [Formula presented] and the [Formula presented], which is the consequence of the existence of critical points of [Formula presented] on [Formula presented], that is, points where [Formula presented]. © 2004 The American Physical Society.
2004
Franzosi, R., Pettini, M. (2004). Theorem on the Origin of Phase Transitions. PHYSICAL REVIEW LETTERS, 92(6) [10.1103/PhysRevLett.92.060601].
File in questo prodotto:
File Dimensione Formato  
FranzPett_PRL_92_04.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 105.23 kB
Formato Adobe PDF
105.23 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
theorem.pdf

accesso aperto

Tipologia: Pre-print
Licenza: Creative commons
Dimensione 142.84 kB
Formato Adobe PDF
142.84 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1227837