We study the dynamical stability of the macroscopic quantum oscillations characterizing a system of three coupled Bose-Einstein condensates arranged into an open-chain geometry. The boson interaction, the hopping amplitude and the central-well relative depth are regarded as adjustable parameters. After deriving the stability diagrams of the system, we identify three mechanisms for realizing the transition from unstable to stable behaviour and analyse specific configurations that, by suitably tuning the model parameters, give rise to macroscopic effects which are expected to be accessible to experimental observation. Also, we pinpoint a system regime that realizes a Josephson-junction-like effect. In this regime, the system configuration does not depend on the model interaction parameters and the population oscillation amplitude is related to the condensate-phase difference. This fact makes estimating the latter quantity possible, since the measure of the oscillating amplitudes is experimentally accessible.

Buonsante, P., Franzosi, R., Penna, V. (2009). Control of unstable macroscopic oscillations in the dynamics of three coupled Bose condensates RID A-2864-2010. JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL, 42(28) [10.1088/1751-8113/42/28/285307].

Control of unstable macroscopic oscillations in the dynamics of three coupled Bose condensates RID A-2864-2010

Franzosi, R.
;
2009-01-01

Abstract

We study the dynamical stability of the macroscopic quantum oscillations characterizing a system of three coupled Bose-Einstein condensates arranged into an open-chain geometry. The boson interaction, the hopping amplitude and the central-well relative depth are regarded as adjustable parameters. After deriving the stability diagrams of the system, we identify three mechanisms for realizing the transition from unstable to stable behaviour and analyse specific configurations that, by suitably tuning the model parameters, give rise to macroscopic effects which are expected to be accessible to experimental observation. Also, we pinpoint a system regime that realizes a Josephson-junction-like effect. In this regime, the system configuration does not depend on the model interaction parameters and the population oscillation amplitude is related to the condensate-phase difference. This fact makes estimating the latter quantity possible, since the measure of the oscillating amplitudes is experimentally accessible.
2009
Buonsante, P., Franzosi, R., Penna, V. (2009). Control of unstable macroscopic oscillations in the dynamics of three coupled Bose condensates RID A-2864-2010. JOURNAL OF PHYSICS. A, MATHEMATICAL AND THEORETICAL, 42(28) [10.1088/1751-8113/42/28/285307].
File in questo prodotto:
File Dimensione Formato  
a9_28_285307.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 810.42 kB
Formato Adobe PDF
810.42 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
control.pdf

accesso aperto

Tipologia: Pre-print
Licenza: Creative commons
Dimensione 9.57 MB
Formato Adobe PDF
9.57 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1226997