We propose a method to associate a differentiable Riemannian manifold to a generic many-degrees-of-freedom discrete system which is not described by a Hamiltonian function. Then, in analogy with classical statistical mechanics, we introduce an entropy as the logarithm of the volume of the manifold. The geometric entropy so defined is able to detect a paradigmatic phase transition occurring in random graphs theory: the appearance of the "giant component" according to the Erdös-Rényi theorem. Copyright © EPLA, 2015.

Franzosi, R., Felice, D., Mancini, S., Pettini, M. (2015). A geometric entropy detecting the Erdos-Renyi phase transition. EUROPHYSICS LETTERS, 111(2) [10.1209/0295-5075/111/20001].

A geometric entropy detecting the Erdos-Renyi phase transition

Franzosi, Roberto;
2015-01-01

Abstract

We propose a method to associate a differentiable Riemannian manifold to a generic many-degrees-of-freedom discrete system which is not described by a Hamiltonian function. Then, in analogy with classical statistical mechanics, we introduce an entropy as the logarithm of the volume of the manifold. The geometric entropy so defined is able to detect a paradigmatic phase transition occurring in random graphs theory: the appearance of the "giant component" according to the Erdös-Rényi theorem. Copyright © EPLA, 2015.
2015
Franzosi, R., Felice, D., Mancini, S., Pettini, M. (2015). A geometric entropy detecting the Erdos-Renyi phase transition. EUROPHYSICS LETTERS, 111(2) [10.1209/0295-5075/111/20001].
File in questo prodotto:
File Dimensione Formato  
EPL111_2_20001.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 494.19 kB
Formato Adobe PDF
494.19 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1226803