The validity of the concept of negative temperature has been recently challenged by arguing that the Boltzmann entropy (that allows negative temperatures) is inconsistent from a mathematical and statistical point of view, whereas the Gibbs entropy (that does not admit negative temperatures) provides the correct definition for the microcanonical entropy. Here we prove that the Boltzmann entropy is thermodynamically and mathematically consistent. Analytical results on two systems supporting negative temperatures illustrate the scenario we propose. In addition we numerically study a lattice system to show that negative temperature equilibrium states are accessible and obey standard statistical mechanics prediction. © 2016 Elsevier Inc.

Buonsante, P., Franzosi, R., Smerzi, A. (2016). On the dispute between Boltzmann and Gibbs entropy. ANNALS OF PHYSICS, 375, 414-434 [10.1016/j.aop.2016.10.017].

On the dispute between Boltzmann and Gibbs entropy

Franzosi, R.
;
2016-01-01

Abstract

The validity of the concept of negative temperature has been recently challenged by arguing that the Boltzmann entropy (that allows negative temperatures) is inconsistent from a mathematical and statistical point of view, whereas the Gibbs entropy (that does not admit negative temperatures) provides the correct definition for the microcanonical entropy. Here we prove that the Boltzmann entropy is thermodynamically and mathematically consistent. Analytical results on two systems supporting negative temperatures illustrate the scenario we propose. In addition we numerically study a lattice system to show that negative temperature equilibrium states are accessible and obey standard statistical mechanics prediction. © 2016 Elsevier Inc.
2016
Buonsante, P., Franzosi, R., Smerzi, A. (2016). On the dispute between Boltzmann and Gibbs entropy. ANNALS OF PHYSICS, 375, 414-434 [10.1016/j.aop.2016.10.017].
File in questo prodotto:
File Dimensione Formato  
Annals-of-Physics375_414.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 555.26 kB
Formato Adobe PDF
555.26 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
dispute.pdf

accesso aperto

Tipologia: Pre-print
Licenza: Creative commons
Dimensione 355.83 kB
Formato Adobe PDF
355.83 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1226800