Let qm = P(X ≤ m), where m is a positive integer and X a binomial random variable with parameters n and m/n. Vašek Chvátal conjectured that, for fixed n ≥ 2, qm attains its minimum when m is the integer closest to 2n/3. As shown by Svante Janson, this conjecture is true for large n. Here, we prove that the conjecture is actually true for every n ≥ 2. © 2022 Elsevier B.V. All rights reserved.

Barabesi, L., Pratelli, L., Rigo, P. (2023). On the Chvátal–Janson conjecture. STATISTICS & PROBABILITY LETTERS, 194, 1-6 [10.1016/j.spl.2022.109744].

On the Chvátal–Janson conjecture

Barabesi L.;
2023-01-01

Abstract

Let qm = P(X ≤ m), where m is a positive integer and X a binomial random variable with parameters n and m/n. Vašek Chvátal conjectured that, for fixed n ≥ 2, qm attains its minimum when m is the integer closest to 2n/3. As shown by Svante Janson, this conjecture is true for large n. Here, we prove that the conjecture is actually true for every n ≥ 2. © 2022 Elsevier B.V. All rights reserved.
2023
Barabesi, L., Pratelli, L., Rigo, P. (2023). On the Chvátal–Janson conjecture. STATISTICS & PROBABILITY LETTERS, 194, 1-6 [10.1016/j.spl.2022.109744].
File in questo prodotto:
File Dimensione Formato  
On the Chvatal-Janson conjecture.pdf

non disponibili

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 347.36 kB
Formato Adobe PDF
347.36 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1224894