Let qm = P(X ≤ m), where m is a positive integer and X a binomial random variable with parameters n and m/n. Vašek Chvátal conjectured that, for fixed n ≥ 2, qm attains its minimum when m is the integer closest to 2n/3. As shown by Svante Janson, this conjecture is true for large n. Here, we prove that the conjecture is actually true for every n ≥ 2. © 2022 Elsevier B.V. All rights reserved.
Barabesi, L., Pratelli, L., Rigo, P. (2023). On the Chvátal–Janson conjecture. STATISTICS & PROBABILITY LETTERS, 194, 1-6 [10.1016/j.spl.2022.109744].
On the Chvátal–Janson conjecture
Barabesi L.;
2023-01-01
Abstract
Let qm = P(X ≤ m), where m is a positive integer and X a binomial random variable with parameters n and m/n. Vašek Chvátal conjectured that, for fixed n ≥ 2, qm attains its minimum when m is the integer closest to 2n/3. As shown by Svante Janson, this conjecture is true for large n. Here, we prove that the conjecture is actually true for every n ≥ 2. © 2022 Elsevier B.V. All rights reserved.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
On the Chvatal-Janson conjecture.pdf
non disponibili
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
347.36 kB
Formato
Adobe PDF
|
347.36 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11365/1224894