Mild heat stimulation of muscle cells within the physiological range represents an intriguing approach for the modulation of their functions. In this work, photothermal conversion was exploited to remotely stimulate striated muscle cells by using gold nanoshells (NSs) in combination with near-infrared (NIR) radiation. Temperature increments of approximately 5 °C were recorded by using an intracellular fluorescent molecular thermometer and were demonstrated to efficiently induce myotube contraction. The mechanism at the base of this phenomenon was thoroughly investigated and was observed to be a Ca2+-independent event directly involving actin-myosin interactions. Finally, chronic remote photothermal stimulations significantly increased the mRNA transcription of genes encoding heat shock proteins and sirtuin 1, a protein which in turn can induce mitochondrial biogenesis. Overall, we provide evidence that remote NIR + NS muscle excitation represents an effective wireless stimulation technique with great potential in the fields of muscle tissue engineering, regenerative medicine, and bionics.
Marino, A., Arai, S., Hou, Y., Degl'Innocenti, A., Cappello, V., Mazzolai, B., et al. (2017). Gold Nanoshell-Mediated Remote Myotube Activation. ACS NANO, 11(3), 2494-2505 [10.1021/acsnano.6b08202].
Gold Nanoshell-Mediated Remote Myotube Activation
Degl'Innocenti Andrea;
2017-01-01
Abstract
Mild heat stimulation of muscle cells within the physiological range represents an intriguing approach for the modulation of their functions. In this work, photothermal conversion was exploited to remotely stimulate striated muscle cells by using gold nanoshells (NSs) in combination with near-infrared (NIR) radiation. Temperature increments of approximately 5 °C were recorded by using an intracellular fluorescent molecular thermometer and were demonstrated to efficiently induce myotube contraction. The mechanism at the base of this phenomenon was thoroughly investigated and was observed to be a Ca2+-independent event directly involving actin-myosin interactions. Finally, chronic remote photothermal stimulations significantly increased the mRNA transcription of genes encoding heat shock proteins and sirtuin 1, a protein which in turn can induce mitochondrial biogenesis. Overall, we provide evidence that remote NIR + NS muscle excitation represents an effective wireless stimulation technique with great potential in the fields of muscle tissue engineering, regenerative medicine, and bionics.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1224220
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo