Purpose: To evaluate features and outcomes of eyes with retinal vasculitis and intraocular inflammation (IOI) after intravitreal injection (IVI) of brolucizumab 6 mg/0.05 ml for treatment of neovascular age-related macular degeneration. Design: Retrospective case series. Participants: Fifteen eyes from 12 patients identified from 10 United States centers. Methods: Review of patient demographics, ophthalmologic examination results, and retinal imaging findings. Main Outcome Measures: Baseline and follow-up visual acuity (VA), prior anti–vascular endothelial growth factor (VEGF) injections, clinical presentation, retinal findings, fluorescein angiography results, and treatment strategies. Results: The number of previous anti-VEGF IVIs ranged between 2 and 80 in the affected eye before switching to brolucizumab. Retinal vasculitis and IOI were diagnosed at a mean of 30 days after brolucizumab IVI. Mean VA before brolucizumab IVI was 0.426 logarithm of the minimum angle of resolution (logMAR; Snellen equivalent, 20/53) and VA at diagnosis of retinal vasculitis was 0.981 logMAR (Snellen equivalent, 20/191; range, 20/25–20/1600; P = 0.008). All affected eyes showed IOI with variable combinations of focal or elongated segmental sheathing and discontinuity of small and large retinal arteries, sclerotic arteries, regions of vascular nonperfusion, cotton-wool spots, Kyrieleis plaques, irregular venous caliber with dilated and sclerotic segments, perivenular hemorrhages, and foci of phlebitis. Fluorescein angiography revealed delayed retinal arterial filling, retinal vascular nonperfusion, and variable dye leakage from affected vessels and the optic nerve. Systemic evaluation for embolic causes was unrevealing in 2 patients, and 3 patients showed negative laboratory assessment for uveitis. Treatment consisted of various combinations of corticosteroids (systemic, intravitreal, and topical), and 2 eyes underwent vitrectomy without improvement in vision. After a mean follow-up of 25 days, mean VA was 0.833 logMAR (Snellen equivalent, 20/136), which was reduced compared with baseline (P = 0.033). Conclusions: Retinal vasculitis and IOI after brolucizumab IVI are characterized by variable occlusion of large or small retinal arteries, or both, and perivenular abnormalities. It may span from peripheral vasculitis to occlusion of large retinal arteries around the optic nerve or macula with severe vision loss. A high index of suspicion is required because vitreous cells may obscure visualization of retinal details. © 2020 American Academy of Ophthalmology
Baumal, C.r., Spaide, R.f., Vajzovic, L., Freund, K.b., Walter, S.d., John, V., et al. (2020). Retinal vasculitis and intraocular inflammation after intravitreal injection of Brolucizumab. OPHTHALMOLOGY, 127(10), 1345-1359 [10.1016/j.ophtha.2020.04.017].
Retinal vasculitis and intraocular inflammation after intravitreal injection of Brolucizumab
Bacci T;
2020-01-01
Abstract
Purpose: To evaluate features and outcomes of eyes with retinal vasculitis and intraocular inflammation (IOI) after intravitreal injection (IVI) of brolucizumab 6 mg/0.05 ml for treatment of neovascular age-related macular degeneration. Design: Retrospective case series. Participants: Fifteen eyes from 12 patients identified from 10 United States centers. Methods: Review of patient demographics, ophthalmologic examination results, and retinal imaging findings. Main Outcome Measures: Baseline and follow-up visual acuity (VA), prior anti–vascular endothelial growth factor (VEGF) injections, clinical presentation, retinal findings, fluorescein angiography results, and treatment strategies. Results: The number of previous anti-VEGF IVIs ranged between 2 and 80 in the affected eye before switching to brolucizumab. Retinal vasculitis and IOI were diagnosed at a mean of 30 days after brolucizumab IVI. Mean VA before brolucizumab IVI was 0.426 logarithm of the minimum angle of resolution (logMAR; Snellen equivalent, 20/53) and VA at diagnosis of retinal vasculitis was 0.981 logMAR (Snellen equivalent, 20/191; range, 20/25–20/1600; P = 0.008). All affected eyes showed IOI with variable combinations of focal or elongated segmental sheathing and discontinuity of small and large retinal arteries, sclerotic arteries, regions of vascular nonperfusion, cotton-wool spots, Kyrieleis plaques, irregular venous caliber with dilated and sclerotic segments, perivenular hemorrhages, and foci of phlebitis. Fluorescein angiography revealed delayed retinal arterial filling, retinal vascular nonperfusion, and variable dye leakage from affected vessels and the optic nerve. Systemic evaluation for embolic causes was unrevealing in 2 patients, and 3 patients showed negative laboratory assessment for uveitis. Treatment consisted of various combinations of corticosteroids (systemic, intravitreal, and topical), and 2 eyes underwent vitrectomy without improvement in vision. After a mean follow-up of 25 days, mean VA was 0.833 logMAR (Snellen equivalent, 20/136), which was reduced compared with baseline (P = 0.033). Conclusions: Retinal vasculitis and IOI after brolucizumab IVI are characterized by variable occlusion of large or small retinal arteries, or both, and perivenular abnormalities. It may span from peripheral vasculitis to occlusion of large retinal arteries around the optic nerve or macula with severe vision loss. A high index of suspicion is required because vitreous cells may obscure visualization of retinal details. © 2020 American Academy of OphthalmologyFile | Dimensione | Formato | |
---|---|---|---|
Retinal Vasculitis and Intraocular Inflammation-Baumal-2020.pdf
non disponibili
Descrizione: Articolo
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.3 MB
Formato
Adobe PDF
|
3.3 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1222974