Considering the rapid growth of tourism in recent years and the acknowledgement that exposure to solar UV radiation may cause skin cancer, sunscreens have been widely used by beach-goers in recent decades. UV filters contained in sunscreens, however, were recently identified as emerging pollutants in coastal waters since they accumulate in the marine environment with different adverse effects. In fact, exposure to these components was proven to be toxic to most invertebrate and vertebrate marine species. Some UV filters are linked to the production of significant amounts of reactive oxygen species (ROS), such as hydrogen peroxide, and the release of inorganic micronutrients that may alter the status of coastal habitats. Bioaccumulation and biomagnification have not yet been fully addressed. This review highlights recent progress in research and provides a comprehensive overview of the toxicological and ecotoxicological effects of the most used UV filters both on the abiotic and biotic compartments in different types of coastal areas, to gain a better understanding of the impacts on coastal biodiversity.
Caloni, S., Durazzano, T., Franci, G., Marsili, L. (2021). Sunscreens’ uv filters risk for coastal marine environment biodiversity: A review. DIVERSITY, 13(8) [10.3390/d13080374].
Sunscreens’ uv filters risk for coastal marine environment biodiversity: A review
Marsili, L.
2021-01-01
Abstract
Considering the rapid growth of tourism in recent years and the acknowledgement that exposure to solar UV radiation may cause skin cancer, sunscreens have been widely used by beach-goers in recent decades. UV filters contained in sunscreens, however, were recently identified as emerging pollutants in coastal waters since they accumulate in the marine environment with different adverse effects. In fact, exposure to these components was proven to be toxic to most invertebrate and vertebrate marine species. Some UV filters are linked to the production of significant amounts of reactive oxygen species (ROS), such as hydrogen peroxide, and the release of inorganic micronutrients that may alter the status of coastal habitats. Bioaccumulation and biomagnification have not yet been fully addressed. This review highlights recent progress in research and provides a comprehensive overview of the toxicological and ecotoxicological effects of the most used UV filters both on the abiotic and biotic compartments in different types of coastal areas, to gain a better understanding of the impacts on coastal biodiversity.File | Dimensione | Formato | |
---|---|---|---|
Caloni et al Marsili 2021 Diversity.pdf
accesso aperto
Tipologia:
PDF editoriale
Licenza:
Creative commons
Dimensione
406.28 kB
Formato
Adobe PDF
|
406.28 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1215358