Crosstalk between trophoblast and monocytes is essential for gestational success, and it can be compromised in congenital toxoplasmosis. Cell death is one of the mechanisms involved in the maintenance of pregnancy, and this study aimed to evaluate the role of trophoblast in the modulation of monocyte cell death in the presence or absence of Toxoplasma gondii infection. THP-1 cells were stimulated with supernatants of BeWo cells and then infected or not with T. gondii. The supernatants were collected and analyzed for the secretion of human Fas ligand, and cells were used to determine cell death and apoptosis, cell death receptor, and intracellular proteins expression. Cell death and apoptosis index were higher in uninfected THP-1 cells stimulated with supernatants of BeWo cells; however, apoptosis index was reduced by T. gondii infection. Macrophage migration inhibitory factor (MIF) and transforming growth factor (TGF)-β1, secreted by BeWo cells, altered the cell death and apoptosis rates in THP-1 cells. In infected THP-1 cells, the expression of Fas/CD95 and secretion of FasL was significantly higher; however, caspase 3 and phosphorylated extracellular-signal-regulated kinase (ERK1/2) were downregulated. Results suggest that soluble factors secreted by BeWo cells induce cell death and apoptosis in THP-1 cells, and Fas/CD95 can be involved in this process. On the other hand, T. gondii interferes in the mechanism of cell death and inhibits THP-1 cell apoptosis, which can be associated with active caspase 3 and phosphorylated ERK1/2. In conclusion, our results showed that human BeWo trophoblast cells and T. gondii infection modulate cell death in human THP-1 monocyte cells.
da Silva Castro, A., Angeloni, M.B., de Freitas Barbosa, B., de Miranda, R.L., Teixeira, S.C., Guirelli, P.M., et al. (2021). BEWO trophoblast cells and Toxoplasma gondii infection modulate cell death mechanisms in THP-1 monocyte cells by interference in the expression of death receptor and intracellular proteins. TISSUE & CELL, 73 [10.1016/j.tice.2021.101658].
BEWO trophoblast cells and Toxoplasma gondii infection modulate cell death mechanisms in THP-1 monocyte cells by interference in the expression of death receptor and intracellular proteins
Ietta F.;
2021-01-01
Abstract
Crosstalk between trophoblast and monocytes is essential for gestational success, and it can be compromised in congenital toxoplasmosis. Cell death is one of the mechanisms involved in the maintenance of pregnancy, and this study aimed to evaluate the role of trophoblast in the modulation of monocyte cell death in the presence or absence of Toxoplasma gondii infection. THP-1 cells were stimulated with supernatants of BeWo cells and then infected or not with T. gondii. The supernatants were collected and analyzed for the secretion of human Fas ligand, and cells were used to determine cell death and apoptosis, cell death receptor, and intracellular proteins expression. Cell death and apoptosis index were higher in uninfected THP-1 cells stimulated with supernatants of BeWo cells; however, apoptosis index was reduced by T. gondii infection. Macrophage migration inhibitory factor (MIF) and transforming growth factor (TGF)-β1, secreted by BeWo cells, altered the cell death and apoptosis rates in THP-1 cells. In infected THP-1 cells, the expression of Fas/CD95 and secretion of FasL was significantly higher; however, caspase 3 and phosphorylated extracellular-signal-regulated kinase (ERK1/2) were downregulated. Results suggest that soluble factors secreted by BeWo cells induce cell death and apoptosis in THP-1 cells, and Fas/CD95 can be involved in this process. On the other hand, T. gondii interferes in the mechanism of cell death and inhibits THP-1 cell apoptosis, which can be associated with active caspase 3 and phosphorylated ERK1/2. In conclusion, our results showed that human BeWo trophoblast cells and T. gondii infection modulate cell death in human THP-1 monocyte cells.File | Dimensione | Formato | |
---|---|---|---|
Bewo and T.gondii.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
4.76 MB
Formato
Adobe PDF
|
4.76 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1215139