Given a bounded open set Ω ⊂ R2, we study the relaxation of the nonparametric area functional in the strict topology in BV (Ω; R2), and compute it for vortex-type maps, and more generally for maps in W1,1(Ω; S1) having a finite number of topological singularities. We also extend the analysis to some specific piecewise constant maps in BV (Ω; S1), including the symmetric triple junction map.

Bellettini, G., Carano, S., Scala, R. (2022). The relaxed area of S1-valued singular maps in the strict BV-convergence. ESAIM. COCV, 28 [10.1051/cocv/2022049].

The relaxed area of S1-valued singular maps in the strict BV-convergence

Giovanni Bellettini;Riccardo Scala
2022

Abstract

Given a bounded open set Ω ⊂ R2, we study the relaxation of the nonparametric area functional in the strict topology in BV (Ω; R2), and compute it for vortex-type maps, and more generally for maps in W1,1(Ω; S1) having a finite number of topological singularities. We also extend the analysis to some specific piecewise constant maps in BV (Ω; S1), including the symmetric triple junction map.
Bellettini, G., Carano, S., Scala, R. (2022). The relaxed area of S1-valued singular maps in the strict BV-convergence. ESAIM. COCV, 28 [10.1051/cocv/2022049].
File in questo prodotto:
File Dimensione Formato  
2022_bellettini_carano_scala_ESAIM.pdf

accesso aperto

Tipologia: PDF editoriale
Licenza: Creative commons
Dimensione 790.44 kB
Formato Adobe PDF
790.44 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11365/1213714