The study was aimed at assessing the influence of the cement manipulation and ultrasounds application on the bonding potential of self-adhesive resin cements to dentin by microtensile bond strength testing and microscopic observations of the interface. Fifty-six standardized mesio-occlusal class II cavities were prepared in extracted third molars. Class II inlays were made using the nano-hybrid resin composite Gradia Forte (GC Corp, Tokyo, Japan), following the manufacturer's instruction. The sample was randomly divided into two groups (n=28) according to the luting technique. Half of the specimens were luted under a static seating pressure (P), while the other ones were cemented under vibration (V). The inlays were luted using the following self-adhesive resin cements: G-Cem (G, GC Corp., Tokyo, Japan) Automix (GA) and Capsule (GC); RelyX Unicem (RU, 3 M ESPE, Seefeld, Germany) Clicker (RUC) and Aplicap (RUA). Microtensile sticks and specimens for scanning electron microscope (SEM) observations were obtained from the luted teeth. The interfacial strengths measured for the cements under static pressure or ultrasonic vibration were [ median (interquartile range)]: GC/V 4 (2.3-7.9); GC/P 6.8 (4.1-10.1); GA/V 3 (1.9-6.7); GA/P 1.9 (0-5.1); RUC/V 6.6 (4.6-9.8); RUC/P 4.1 (1.8-6.4); RUA/V 6.2 (2.4-10.4); RUA/P 3.4 (0-5.4). The cement formulation influenced dentin bond strength of G. RU bond strength was affected by the luting technique. SEM analysis revealed a homogeneous structure and reduced porosities for both cements as a result of ultrasonic vibration. RU benefited from the application of ultrasounds, while GC achieved higher bond strengths than GA.

Cantoro, A., Goracci, C., Coniglio, I., Magni, E., Polimeni, A., Ferrari, M. (2011). Influence of ultrasound application on inlays luting with self-adhesive resin cements. CLINICAL ORAL INVESTIGATIONS, 15(5), 617-623 [10.1007/s00784-010-0451-5].

Influence of ultrasound application on inlays luting with self-adhesive resin cements

GORACCI C.;FERRARI M.
2011-01-01

Abstract

The study was aimed at assessing the influence of the cement manipulation and ultrasounds application on the bonding potential of self-adhesive resin cements to dentin by microtensile bond strength testing and microscopic observations of the interface. Fifty-six standardized mesio-occlusal class II cavities were prepared in extracted third molars. Class II inlays were made using the nano-hybrid resin composite Gradia Forte (GC Corp, Tokyo, Japan), following the manufacturer's instruction. The sample was randomly divided into two groups (n=28) according to the luting technique. Half of the specimens were luted under a static seating pressure (P), while the other ones were cemented under vibration (V). The inlays were luted using the following self-adhesive resin cements: G-Cem (G, GC Corp., Tokyo, Japan) Automix (GA) and Capsule (GC); RelyX Unicem (RU, 3 M ESPE, Seefeld, Germany) Clicker (RUC) and Aplicap (RUA). Microtensile sticks and specimens for scanning electron microscope (SEM) observations were obtained from the luted teeth. The interfacial strengths measured for the cements under static pressure or ultrasonic vibration were [ median (interquartile range)]: GC/V 4 (2.3-7.9); GC/P 6.8 (4.1-10.1); GA/V 3 (1.9-6.7); GA/P 1.9 (0-5.1); RUC/V 6.6 (4.6-9.8); RUC/P 4.1 (1.8-6.4); RUA/V 6.2 (2.4-10.4); RUA/P 3.4 (0-5.4). The cement formulation influenced dentin bond strength of G. RU bond strength was affected by the luting technique. SEM analysis revealed a homogeneous structure and reduced porosities for both cements as a result of ultrasonic vibration. RU benefited from the application of ultrasounds, while GC achieved higher bond strengths than GA.
2011
Cantoro, A., Goracci, C., Coniglio, I., Magni, E., Polimeni, A., Ferrari, M. (2011). Influence of ultrasound application on inlays luting with self-adhesive resin cements. CLINICAL ORAL INVESTIGATIONS, 15(5), 617-623 [10.1007/s00784-010-0451-5].
File in questo prodotto:
File Dimensione Formato  
Cantoro_CLOI10.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 314.99 kB
Formato Adobe PDF
314.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/12081
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo