Protecting the Intellectual Property Rights (IPR) associated to Deep Neural Networks (DNNs) is a pressing need pushed by the high costs required to train such networks and by the importance that DNNs are gaining in our society. Following its use for Multimedia (MM) IPR protection, digital watermarking has recently been considered as a mean to protect the IPR of DNNs. While DNN watermarking inherits some basic concepts and methods from MM watermarking, there are significant differences between the two application areas, thus calling for the adaptation of media watermarking techniques to the DNN scenario and the development of completely new methods. In this paper, we overview the most recent advances in DNN watermarking, by paying attention to cast them into the bulk of watermarking theory developed during the last two decades, while at the same time highlighting the new challenges and opportunities characterising DNN watermarking. Rather than trying to present a comprehensive description of all the methods proposed so far, we introduce a new taxonomy of DNN watermarking and present a few exemplary methods belonging to each class. We hope that this paper will inspire new research in this exciting area and will help researchers to focus on the most innovative and challenging problems in the field.

Li, Y., Wang, H., Barni, M. (2021). A survey of Deep Neural Network watermarking techniques. NEUROCOMPUTING, 461, 171-193 [10.1016/j.neucom.2021.07.051].

A survey of Deep Neural Network watermarking techniques

Barni, Mauro
2021-01-01

Abstract

Protecting the Intellectual Property Rights (IPR) associated to Deep Neural Networks (DNNs) is a pressing need pushed by the high costs required to train such networks and by the importance that DNNs are gaining in our society. Following its use for Multimedia (MM) IPR protection, digital watermarking has recently been considered as a mean to protect the IPR of DNNs. While DNN watermarking inherits some basic concepts and methods from MM watermarking, there are significant differences between the two application areas, thus calling for the adaptation of media watermarking techniques to the DNN scenario and the development of completely new methods. In this paper, we overview the most recent advances in DNN watermarking, by paying attention to cast them into the bulk of watermarking theory developed during the last two decades, while at the same time highlighting the new challenges and opportunities characterising DNN watermarking. Rather than trying to present a comprehensive description of all the methods proposed so far, we introduce a new taxonomy of DNN watermarking and present a few exemplary methods belonging to each class. We hope that this paper will inspire new research in this exciting area and will help researchers to focus on the most innovative and challenging problems in the field.
2021
Li, Y., Wang, H., Barni, M. (2021). A survey of Deep Neural Network watermarking techniques. NEUROCOMPUTING, 461, 171-193 [10.1016/j.neucom.2021.07.051].
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S092523122101095X-main.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.01 MB
Formato Adobe PDF
2.01 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Deep pre print.pdf

accesso aperto

Descrizione: Published version: https://doi.org/10.1016/j.neucom.2021.07.051
Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1204094