In this paper, we present a clinical decision support system (CDSS) for the analysis of heart failure (HF) patients, providing various outputs such as an HF severity evaluation, HF-type prediction, as well as a management interface that compares the different patients' follow-ups. The whole system is composed of a part of intelligent core and of an HF special-purpose management tool also providing the function to act as interface for the artificial intelligence training and use. To implement the smart intelligent functions, we adopted a machine learning approach. In this paper, we compare the performance of a neural network (NN), a support vector machine, a system with fuzzy rules genetically produced, and a classification and regression tree and its direct evolution, which is the random forest, in analyzing our database. Best performances in both HF severity evaluation and HF-type prediction functions are obtained by using the random forest algorithm. The management tool allows the cardiologist to populate a "supervised database" suitable for machine learning during his or her regular outpatient consultations. The idea comes from the fact that in literature there are a few databases of this type, and they are not scalable to our case.
Guidi, G., Maria Chiara, P., Paolo, M., Iadanza, E. (2014). A Machine Learning System to Improve Heart Failure Patient Assistance. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 18, 1750-1756 [10.1109/JBHI.2014.2337752].
A Machine Learning System to Improve Heart Failure Patient Assistance
IADANZA, ERNESTO
2014-01-01
Abstract
In this paper, we present a clinical decision support system (CDSS) for the analysis of heart failure (HF) patients, providing various outputs such as an HF severity evaluation, HF-type prediction, as well as a management interface that compares the different patients' follow-ups. The whole system is composed of a part of intelligent core and of an HF special-purpose management tool also providing the function to act as interface for the artificial intelligence training and use. To implement the smart intelligent functions, we adopted a machine learning approach. In this paper, we compare the performance of a neural network (NN), a support vector machine, a system with fuzzy rules genetically produced, and a classification and regression tree and its direct evolution, which is the random forest, in analyzing our database. Best performances in both HF severity evaluation and HF-type prediction functions are obtained by using the random forest algorithm. The management tool allows the cardiologist to populate a "supervised database" suitable for machine learning during his or her regular outpatient consultations. The idea comes from the fact that in literature there are a few databases of this type, and they are not scalable to our case.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1201125
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo