This paper continues the theoretical study of weighted structures in mathematical fuzzy logic focusing on the finite model theory of fuzzy logics valued on arbitrary finite MTL-chains. We show that for any first-order (or infinitary with finitely many variables) formula phi, there is a unique truth-value that phi takes almost surely in every finite many-valued model and such that every other truth-value is almost surely not taken. This generalizes a theorem in the fuzzy setting due to Robert Kosik and Christian G. Fermuller.
Badia, G., Noguera, C. (2022). A 0-1 Law in Mathematical Fuzzy Logic. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 30(9), 3833-3840 [10.1109/TFUZZ.2021.3131200].
A 0-1 Law in Mathematical Fuzzy Logic
Noguera C.
2022-01-01
Abstract
This paper continues the theoretical study of weighted structures in mathematical fuzzy logic focusing on the finite model theory of fuzzy logics valued on arbitrary finite MTL-chains. We show that for any first-order (or infinitary with finitely many variables) formula phi, there is a unique truth-value that phi takes almost surely in every finite many-valued model and such that every other truth-value is almost surely not taken. This generalizes a theorem in the fuzzy setting due to Robert Kosik and Christian G. Fermuller.File | Dimensione | Formato | |
---|---|---|---|
Badia-Noguera-01-laws-final.pdf
non disponibili
Tipologia:
Pre-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
356.11 kB
Formato
Adobe PDF
|
356.11 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
A_0-1_Law_in_Mathematical_Fuzzy_Logic.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
277.14 kB
Formato
Adobe PDF
|
277.14 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1199916