Introduction: Although most risk-stratification scores are derived from preoperative patient variables, there are several intraoperative and postoperative variables that can influence prognosis. Higgins and colleagues previously evaluated the contribution of preoperative, intraoperative and postoperative predictors to the outcome. We developed a Bayes linear model to discriminate morbidity risk after coronary artery bypass grafting and compared it with three different score models: the Higgins' original scoring system, derived from the patient's status on admission to the intensive care unit (ICU), and two models designed and customized to our patient population. Methods: We analyzed 88 operative risk factors; 1,090 consecutive adult patients who underwent coronary artery bypass grafting were studied. Training and testing data sets of 740 patients and 350 patients, respectively, were used. A stepwise approach enabled selection of an optimal subset of predictor variables. Model discrimination was assessed by receiver operating characteristic (ROC) curves, whereas calibration was measured using the Hosmer-Lemeshow goodness-of-fit test. Results: A set of 12 preoperative, intraoperative and postoperative predictor variables was identified for the Bayes linear model. Bayes and locally customized score models fitted according to the Hosmer-Lemeshow test. However, the comparison between the areas under the ROC curve proved that the Bayes linear classifier had a significantly higher discrimination capacity than the score models. Calibration and discrimination were both much worse with Higgins' original scoring system. Conclusion: Most prediction rules use sequential numerical risk scoring to quantify prognosis and are an advanced form of audit. Score models are very attractive tools because their application in routine clinical practice is simple. If locally customized, they also predict patient morbidity in an acceptable manner. The Bayesian model seems to be a feasible alternative. It has better discrimination and can be tailored more easily to individual institutions.

Biagioli, B., Scolletta, S., Cevenini, G., Barbini, E., Giomarelli, P., & Barbini, P. (2006). A multivariate Bayesian model for assessing morbidity after coronary artery surgery. CRITICAL CARE, 10(3), 1-13 [10.1186/cc4951].

A multivariate Bayesian model for assessing morbidity after coronary artery surgery.

Biagioli Bonizella;Scolletta Sabino;Cevenini Gabriele;Giomarelli Pierpaolo;Barbini Paolo
2006

Abstract

Introduction: Although most risk-stratification scores are derived from preoperative patient variables, there are several intraoperative and postoperative variables that can influence prognosis. Higgins and colleagues previously evaluated the contribution of preoperative, intraoperative and postoperative predictors to the outcome. We developed a Bayes linear model to discriminate morbidity risk after coronary artery bypass grafting and compared it with three different score models: the Higgins' original scoring system, derived from the patient's status on admission to the intensive care unit (ICU), and two models designed and customized to our patient population. Methods: We analyzed 88 operative risk factors; 1,090 consecutive adult patients who underwent coronary artery bypass grafting were studied. Training and testing data sets of 740 patients and 350 patients, respectively, were used. A stepwise approach enabled selection of an optimal subset of predictor variables. Model discrimination was assessed by receiver operating characteristic (ROC) curves, whereas calibration was measured using the Hosmer-Lemeshow goodness-of-fit test. Results: A set of 12 preoperative, intraoperative and postoperative predictor variables was identified for the Bayes linear model. Bayes and locally customized score models fitted according to the Hosmer-Lemeshow test. However, the comparison between the areas under the ROC curve proved that the Bayes linear classifier had a significantly higher discrimination capacity than the score models. Calibration and discrimination were both much worse with Higgins' original scoring system. Conclusion: Most prediction rules use sequential numerical risk scoring to quantify prognosis and are an advanced form of audit. Score models are very attractive tools because their application in routine clinical practice is simple. If locally customized, they also predict patient morbidity in an acceptable manner. The Bayesian model seems to be a feasible alternative. It has better discrimination and can be tailored more easily to individual institutions.
File in questo prodotto:
File Dimensione Formato  
112216_UPLOAD.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 454.11 kB
Formato Adobe PDF
454.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11365/11997
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo