A general methodological approach is here discussed to integrate geological and geophysical information in seismic microzonation studies. In particular, the methodology aims at maximizing the exploitation of low-cost data for an extensive preliminary assessment of ground motion amplification phenomena induced by the local seismo-stratigraphical configuration. Three main steps are delineated: (a) the combination of geological/geomorphological analyses to develop an Engineering-Geological Model of the study area; (b) targeted geophysical prospecting to provide an Engineering-Geological/Geophysical Model; (c) evaluating effectiveness of Engineering-Geological/Geophysical Model by estimating expected ground motion amplification phenomena by the use of suitable computational tools. The workflow is illustrated by a case-study based on a set of villages in the Umbro-Marchean Apennine (Central Italy) damaged during the Seismic sequence that occurred in Central Italy during 2016–2017.

Pieruccini, P., Paolucci, E., Fantozzi, P.L., Naldini, D., Albarello, D. (2022). Developing effective subsoil reference model for seismic microzonation studies: Central Italy case studies. NATURAL HAZARDS, 112(1), 451-474 [10.1007/s11069-021-05188-5].

Developing effective subsoil reference model for seismic microzonation studies: Central Italy case studies

Paolucci, E.;Fantozzi, P. L.;Albarello, D.
2022-01-01

Abstract

A general methodological approach is here discussed to integrate geological and geophysical information in seismic microzonation studies. In particular, the methodology aims at maximizing the exploitation of low-cost data for an extensive preliminary assessment of ground motion amplification phenomena induced by the local seismo-stratigraphical configuration. Three main steps are delineated: (a) the combination of geological/geomorphological analyses to develop an Engineering-Geological Model of the study area; (b) targeted geophysical prospecting to provide an Engineering-Geological/Geophysical Model; (c) evaluating effectiveness of Engineering-Geological/Geophysical Model by estimating expected ground motion amplification phenomena by the use of suitable computational tools. The workflow is illustrated by a case-study based on a set of villages in the Umbro-Marchean Apennine (Central Italy) damaged during the Seismic sequence that occurred in Central Italy during 2016–2017.
2022
Pieruccini, P., Paolucci, E., Fantozzi, P.L., Naldini, D., Albarello, D. (2022). Developing effective subsoil reference model for seismic microzonation studies: Central Italy case studies. NATURAL HAZARDS, 112(1), 451-474 [10.1007/s11069-021-05188-5].
File in questo prodotto:
File Dimensione Formato  
NHAZ_Pieruccini et al 2022.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.39 MB
Formato Adobe PDF
4.39 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1196944