In this paper we derive a line tension model for dislocations in 3D starting from a geometrically nonlinear elastic energy with quadratic growth. In the asymptotic analysis, as the amplitude of the Burgers vectors (proportional to the lattice spacing) tends to zero, we show that the elastic energy linearizes and the line tension energy density, up to an overall constant rotation, is identi_ed by the linearized cell problem formula given in [S. Conti, A. Garroni, and M. Ortiz, Arch. Ration. Mech. Anal., 218 (2015), pp. 699{755].

Garroni, A., Marziani, R., Scala, R. (2021). Derivation of a line-tension model for dislocations from a nonlinear three-dimensional energy: The case of quadratic growth. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 53(4), 4252-4302 [10.1137/20M1330117].

Derivation of a line-tension model for dislocations from a nonlinear three-dimensional energy: The case of quadratic growth

SCALA R.
2021-01-01

Abstract

In this paper we derive a line tension model for dislocations in 3D starting from a geometrically nonlinear elastic energy with quadratic growth. In the asymptotic analysis, as the amplitude of the Burgers vectors (proportional to the lattice spacing) tends to zero, we show that the elastic energy linearizes and the line tension energy density, up to an overall constant rotation, is identi_ed by the linearized cell problem formula given in [S. Conti, A. Garroni, and M. Ortiz, Arch. Ration. Mech. Anal., 218 (2015), pp. 699{755].
2021
Garroni, A., Marziani, R., Scala, R. (2021). Derivation of a line-tension model for dislocations from a nonlinear three-dimensional energy: The case of quadratic growth. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 53(4), 4252-4302 [10.1137/20M1330117].
File in questo prodotto:
File Dimensione Formato  
GMS-finale(2).pdf

non disponibili

Tipologia: Pre-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 434.89 kB
Formato Adobe PDF
434.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Garroni_Derivation_2021.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 609.48 kB
Formato Adobe PDF
609.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1196092