Background-Current therapies are ineffective in preventing the development of cardiac phenotype in young carriers of mutations associated with hypertrophic cardiomyopathy (HCM). Ranolazine, a late Na+ current blocker, reduced the electromechanical dysfunction of human HCM myocardium in vitro. Methods and Results-To test whether long-term treatment prevents cardiomyopathy in vivo, transgenic mice harboring the R92Q troponin-T mutation and wild-type littermates received an oral lifelong treatment with ranolazine and were compared with age-matched vehicle-treated animals. In 12-months-old male R92Q mice, ranolazine at therapeutic plasma concentrations prevented the development of HCM-related cardiac phenotype, including thickening of the interventricular septum, left ventricular volume reduction, left ventricular hypercontractility, diastolic dysfunction, left-atrial enlargement and left ventricular fibrosis, as evaluated in vivo using echocardiography and magnetic resonance. Left ventricular cardiomyocytes from vehicle-treated R92Q mice showed marked excitation-contraction coupling abnormalities, including increased diastolic [Ca2+] and Ca2+ waves, whereas cells from treated mutants were undistinguishable from those from wild-type mice. Intact trabeculae from vehicle-treated mutants displayed inotropic insufficiency, increased diastolic tension, and premature contractions; ranolazine treatment counteracted the development of myocardial mechanical abnormalities. In mutant myocytes, ranolazine inhibited the enhanced late Na+ current and reduced intracellular [Na+] and diastolic [Ca2+], ultimately preventing the pathological increase of calmodulin kinase activity in treated mice. Conclusions-Owing to the sustained reduction of intracellular Ca2+ and calmodulin kinase activity, ranolazine prevented the development of morphological and functional cardiac phenotype in mice carrying a clinically relevant HCM-related mutation. Pharmacological inhibitors of late Na+ current are promising candidates for an early preventive therapy in young phenotype-negative subjects carrying high-risk HCM-related mutations.

Coppini, R., Mazzoni, L., Ferrantini, C., Gentile, F., Pioner, J.M., Laurino, A., et al. (2017). Ranolazine Prevents Phenotype Development in a Mouse Model of Hypertrophic Cardiomyopathy. CIRCULATION. HEART FAILURE, 10(3) [10.1161/CIRCHEARTFAILURE.116.003565].

Ranolazine Prevents Phenotype Development in a Mouse Model of Hypertrophic Cardiomyopathy

Laurino, A.;
2017-01-01

Abstract

Background-Current therapies are ineffective in preventing the development of cardiac phenotype in young carriers of mutations associated with hypertrophic cardiomyopathy (HCM). Ranolazine, a late Na+ current blocker, reduced the electromechanical dysfunction of human HCM myocardium in vitro. Methods and Results-To test whether long-term treatment prevents cardiomyopathy in vivo, transgenic mice harboring the R92Q troponin-T mutation and wild-type littermates received an oral lifelong treatment with ranolazine and were compared with age-matched vehicle-treated animals. In 12-months-old male R92Q mice, ranolazine at therapeutic plasma concentrations prevented the development of HCM-related cardiac phenotype, including thickening of the interventricular septum, left ventricular volume reduction, left ventricular hypercontractility, diastolic dysfunction, left-atrial enlargement and left ventricular fibrosis, as evaluated in vivo using echocardiography and magnetic resonance. Left ventricular cardiomyocytes from vehicle-treated R92Q mice showed marked excitation-contraction coupling abnormalities, including increased diastolic [Ca2+] and Ca2+ waves, whereas cells from treated mutants were undistinguishable from those from wild-type mice. Intact trabeculae from vehicle-treated mutants displayed inotropic insufficiency, increased diastolic tension, and premature contractions; ranolazine treatment counteracted the development of myocardial mechanical abnormalities. In mutant myocytes, ranolazine inhibited the enhanced late Na+ current and reduced intracellular [Na+] and diastolic [Ca2+], ultimately preventing the pathological increase of calmodulin kinase activity in treated mice. Conclusions-Owing to the sustained reduction of intracellular Ca2+ and calmodulin kinase activity, ranolazine prevented the development of morphological and functional cardiac phenotype in mice carrying a clinically relevant HCM-related mutation. Pharmacological inhibitors of late Na+ current are promising candidates for an early preventive therapy in young phenotype-negative subjects carrying high-risk HCM-related mutations.
2017
Coppini, R., Mazzoni, L., Ferrantini, C., Gentile, F., Pioner, J.M., Laurino, A., et al. (2017). Ranolazine Prevents Phenotype Development in a Mouse Model of Hypertrophic Cardiomyopathy. CIRCULATION. HEART FAILURE, 10(3) [10.1161/CIRCHEARTFAILURE.116.003565].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1189891
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo